[1] 路长柏. 电抗器理论与计算[M]. 沈阳: 沈阳出版社, 2009.
[2] 李霞, 刘燕, 肖勋. 关于干式空心电抗器试验的几个问题[J]. 变压器, 2013, 50(2): 57-59. Li Xia, Liu Yan, Xiao Xun. Several questions of dry-type air-core reactors test[J]. Transformer, 2013, 50(2): 57-59.
[3] 夏天伟, 闫英敏. 干式空心限流电抗器的优化设计问题[J]. 电机与控制学报, 1998, 2(1): 51-53. Xia Tianwei, Yan Yingmin. Optimum design of dry- type air-core current-limited reactor[J]. Electric Machines and Control, 1998, 2(1): 51-53.
[4] 曹云东, 夏天伟, 高慧萍, 等. 干式空心电抗器优化设计中等式约束处理的研究[J].电工技术学报, 1999, 14(4): 31-34. Cao Yundong, Xia Tianwei, Gao Huiping, et al. Research of the equality constraints in the optimum design of the dry-type air reactors[J]. Transactions of China Electrotechnical Society, 1999, 14(4): 31-34.
[5] Yan Xiuke, Dai Zhongbin, Zhang Yanli, et al. Fluid- thermal field coupled analysis of air core power reactor[C]. Electromagnetic Field Problems and App- lications (ICEF), 2012: 1-4.
[6] 刘志刚, 王建华, 耿英三, 等. 干式空心电抗器设计软件开发与应用[J]. 电机与控制学报, 2003, 7(2): 103-106. Liu Zhigang, Wang Jianhua, Geng Yingsan, et al. Development and application of design software of dry-type air-core reactor[J]. Electric Machines and Control, 2003, 7(2): 103-106.
[7] 刘志刚, 耿英三, 王建华, 等. 干式空心电抗器的优化设计[J]. 高电压技术, 2003, 7(2): 103-106. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. The optimum design of dry-type air-core reactor[J]. High Voltage Engineering, 2003, 7(2): 103-106.
[8] 刘志刚, 耿英三, 王建华, 等. 基于改进自适应遗传算法的空心串联电抗器优化设计[J]. 中国电机工程学报, 2003, 23(9): 103-106. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. Optimum design of dry-type air-core series reactor based on modified adaptive genetic algorithm[J]. Proceedings of the CSEE, 2003, 23(9): 103-106.
[9] 刘志刚, 王建华, 耿英三, 等. 一种改进的遗传模拟退火算法及其应用[J]. 系统仿真学报, 2004, 16(5): 1099-1101. Liu Zhigang, Wang Jianhua, Geng Yingsan, et al. A modified genetic simulated annealing algorithm and its application[J]. Journal of System Simulation, 2004, 16(5): 1099-1101.
[10] 刘志刚, 欧阳森, 耿英三, 等. 遗传算法在空心电抗器优化设计中的应用研究[J]. 电工电能新技术, 2003, 22(3): 45-49. Liu Zhigang, Ouyang Sen, Geng Yingsan, et al. Study of genetic algorithm in the optimum design of air-core reactor[J]. Advanced Thechnology of Electrical Enginee- ring and Energy, 2003, 22(3): 45-49.
[11] Zhao Y, Chen F, Kang B, et al. Optimum design of dry-type air-core reactor based on the additional constraints balance and hybrid genetic algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(1): 279-284.
[12] 康博. 干式空心电抗器的优化模型与混合遗传算法优化设计[D]. 西安: 西安交通大学, 2009.
[13] 刘志刚, 耿英三, 王建华, 等. 基于流场-温度场耦合计算的新型空心电抗器设计与分析[J]. 电工技术学报, 2003, 18(6): 59-63. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. Design and analysis of new type air-core reactor based on coupled fluid-thermal field calculation[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 59-63.
[14] 刘志刚, 王建华, 耿英三, 等. 基于耦合方法的干式空心阻尼电抗器温度场计算[J]. 西安交通大学学报, 2003, 37(6): 622-625. Liu Zhigang, Wang Jianhua, Geng Yingsan, et al. Calculation of temperature field of dry-type air-core damping reactor based on coupled method[J]. Journal of Xi'an Jiaotong University, 2003, 37(6): 622-625.
[15] 刘全峰, 党红阁, 梁艺超, 等. 电抗器设计优化算法[J]. 电力电容器与无功补偿, 2011, 32(5): 46-50. Liu Quanfeng, Dang Hongge, Liang Yichao, et al. Optimization algorithm of the reactor design[J]. Power Capacitor & Reactive Power Compensation, 2011, 32(5): 46-50.
[16] 赵彦珍, 康博, 马西奎. 基于附加约束条件平衡原则的干式空心电抗器优化模型[J]. 电工技术学报, 2010, 25(11): 80-83. Zhao Yanzhen, Kang Bo, Ma Xikui. Optimization model of dry type air-core reactor based on balance of additional constraints[J]. Transactions of China Elec- trotechnical Society, 2010, 25(11): 80-83.
[17] Sippola M, Sepponen R E. Accurate prediction of high-frequency power-transformer losses and tem- perature rise[J]. IEEE Transactions on Power Elec- tronics, 2002, 17: 835-847.
[18] 颜威利, 杨庆新, 汪友华, 等. 电气工程电磁场数值分析[M]. 北京: 机械工业出版社, 2005.
[19] Ortiz C, Skorek A W, Lavoie M, et al. Parallel CFD analysis of conjugate heat transfer in dry-type trans- former[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1503-1504.
[20] Boglietti A, Lazzari M, Pastorelli M. A simplified method for the iron losses prediction in soft magnetic materials with arbitrary voltage supply[A]. IEEE Piscataway, USA, 2000: 269-276. |