|
|
Phase Theoretical Line Loss Calculation and Analysis Based on Clustering Theory |
Li Xueping1,Liu Yiran1,2,Lu Zhigang1,Bao Feng3 |
1. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province Yanshan University Qinhuangdao 066004 China; 2. State Grid Jibei Electric Power Company Limited Qinglong County Electric Power Supply Company Qinhuangdao 066500 China; 3. State Grid Heilongjiang Province Electric Power Company Limited Haerbin 150090 China |
|
|
Abstract Automatic acquisition may fail to collect data; what’s more, single section network loss can not depict loss of power grid during a period. In view of the above facts, a method based on clustering theory for phase theoretical line loss calculation and analysis is proposed,which only takes node power injection and parameter variation into account. Firstly, the composition of section network loss is analyzed. Secondly, on the basis of section data, feature vector is extracted. A nuclear feature vector calculation method based on rough set theory is used to deal with the situation of failure acquisition. Weight vector of the clustering center section is calculated to match the feature vector through quantizing the network loss increment caused by node power injection and network parameters variation. Finally, the nearest neighbor clustering is improved to analyse and to obtain the theoretical line loss of any section and any period. The Matlab simulation results demonstrate the effectiveness of the proposed method.
|
Received: 11 September 2013
Published: 14 September 2015
|
|
|
|
|
[1] 余卫国, 熊幼京, 周新风, 等. 电力网技术线损分析及降损对策[J]. 电网技术, 2006, 30(18): 38-42. Yu Weiguo, Xiong Youjing, Zhou Xinfeng, et al. Analysison technical line losses of power grids and counter measures to reduce line losses[J]. Power System Technology, 2006, 30(18): 38-42. [2] 余涛, 刘靖, 胡细兵. 基于分布式多步回溯 Q ( λ )学习的复杂电网最优潮流算法[J]. 电工技术学报, 2012, 27(4): 185-192. Yu Tao, Liu Jing, Hu Xibing. Optimal power flow for complex power grid using distributed multi-step backtrack Q ( λ )Learning[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 185-192. [3] 卢志刚, 程慧琳, 冯磊. 基于支路功率选取的功率扩展潮流计算[J]. 电工技术学报, 2013, 28(6): 208-214. Lu Zhigang, Cheng Huilin, Feng Lei. Extended-power load flow calculation based on selection of branch power[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 208-214. [4] 李秀卿, 赵丽娜, 孟庆然, 等. IGA优化的神经网络计算配电网理论线损[J]. 电力系统及其自动化学报, 2009, 21(5): 87-91. Li Xiuqing, Zhao Lina, Meng Qingran, et al. Calculation of line losses in distribution systems using artificial neural network aided by immune genetic algorithm[J]. Proceedings of the CSU-EPSA, 2009, 21(5): 87-91. [5] 彭宇文, 刘克文. 基于改进核心向量机的配电网理论线损计算方法[J]. 中国电机工程学报, 2011, 31(34): 120-126. Peng Yuwen, Liu Kewen. A distribution network theoretical line loss calculation method based on improved core vector machine[J]. Proceedings of the CSEE, 2011, 31(34): 120-126. [6] 邓芳. 配网线损实时统计与分析系统[J]. 电网技术, 2007, 31(1): 186-188. Deng Fang. Real time measurement and analysis system of line losses in distribution networks[J]. Power System Technology, 2007, 31(1): 186-188. [7] Exposito G, Salltos J M R, Garcia T G, et al. Fair allocation on transmission power losses[J]. IEEE Trans on Power Systems, 2000, 15(L): 184-188. [8] 徐昌凤. 改迸潮流跟踪法输电固定成本分摊的研究[D]. 南昌大学, 2012. [9] 李春燕, 俞集辉, 谢开贵, 等. 基于扩展关联矩阵的电流跟踪模型和算法[J]. 电工技术学报, 2008, 23(4): 104-111. Li Chunyan, Yu Jihui, Xie Kaigui, et al. Model and algorithm of current tracing based on extended incidence matrix[J]. Transactions of China Electrotechnical Society, 2008, 23(4): 104-111. [10] 谭伦农, 张保会. 输电线路的利用份额及损耗分摊问题[J]. 电工技术学报, 2002, 17(6): 97-101. Tan Lunnong, Zhang Baohui. Problems of using proportion of transmission line and loss allocation[J]. Transactions of China Electrotechnical Society, 2002, 17(6): 97-101. [11] 颜丽, 鲍海. 基于电流分布的电网功率分布因子的计算[J]. 中国电机工程学报, 2011, 31(1): 80-85. Yan Li, Bao Hai. Algorithm of power distribution factor based on current distribution[J]. Proceedings of the CSEE, 2011, 31(1): 80-85. [12] Ai Dongping, Bao Hai, Yang Yihan. Analysis of loss compensation on generation rights trade by circuit theory[C]. Power and Energy Eng. Conf. (APPEEC), 2010: 1-4. [13] 冯林桥, 许文玉, 刘飞. 实时网损电量的计算及分摊[J]. 中国电机工程学报, 2004, 24(2): 66-70. Feng Linqiao, Xu Wenyu, Liu Fei. Calculation and apportionment of real-time electric energy loss in power network[J]. Proceedings of the CSEE, 2004, 24(2): 66-70. [14] 卢志刚, 魏国华, 朱连波, 等. 线路损失的灵敏度分析和参数综合优化[J]. 高电压技术, 2010, 36(5): 1311-1316. Lu Zhigang, Wei Guohua, Zhu Lianbo, et al. Sensitivity analysis of line losses and parameter’s comprehensive optimization[J]. High Voltage Engineering, 2010, 36(5): 1311-1316. [15] 张绍德, 毛雪菲, 毛雪芹. 基于最邻近聚类支持向量机辨识的电弧炉逆电极控制[J]. 控制理论与应用, 2010, 27(7): 909-915. Zhang Shaode, Mao Xuefei, Mao Xueqin. Inverse control for electrodes in electric are furnace based on support-vector-machines identification on nearest neighbor lustering[J]. Control Theory & Applications, 2010, 27(7): 909-915. [16] 张秀玲, 宋建军, 褚福磊, 等. 基于动态最近邻聚类算法的RBF神经网络及其在MH-Ni电池容量预测中的应用[J]. 电工技术学报, 2005, 20(11): 84-87. Zhang Xiuling, Song Jianjun, Chu Fulei, et al. RBF neural networks based on dynamic nearest neighbor- clustering algorithm and its application in prediction of MH-Ni battery capacity[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 84-87. [17] 李会民, 方丽英, 闰健卓, 等. 基于扩展范式距离的纵向数据相似性度量[J]. 计算机与应用化学, 2012, 29(10): 1176-1180. Li Huimin, Fang Liying, Yan Jianzhuo, et al. Algorithm based on norm distance distance similarty measurement for longitudinal data[J]. Computers and Applied Che- misty, 2012, 29(10): 1176-1180. [18] 邓冠男. 聚类分析中的相似度研究[J]. 东北电力大学学报, 2013, 33(1/2): 156-161. Deng Guannan. The similarity measure in clustering [J]. Journal of Northeast Dianli University, 2013, 33(1/2): 156-161. [19] 钱鹏江, 王士同, 邓赵红, 等. 基于最小包含球的大数据集快速谱聚类算法[J]. 电子学报, 2010, 38(9): 2035-2041. Qian Pengjiang, Wang Shitong, Deng Zhaohong, et al. Fast spectral clustering for large data sets using minimal enclosing ball[J]. Acta Electronica Sinica, 2010, 38(9): 2035-2041. |
|
|
|