|
|
Pattern Recognition of Unknown Types in Partial Discharge Signals Based on Variable Predictive Model and Tanimoto |
Deng Ran, Zhu Yongli, Liu Xuechun, Zhai Yujia |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source North China Electric Power University Baoding 071003 China |
|
|
Abstract For new samples that may not belong to the known discharge types in the partial discharge, a method based on variable predictive model and Tanimoto (VPM-Tanimoto) similarity is proposed to recognize the unknown types. The expression of unknown signals is achieved by constructing gradient pattern spectra, and two indicators are used to separate the unknown signals by filtering all signals in different areas. Firstly, φ -Δφ、φ -Δu、φ -Δqmax、φ -Δn and φ -n spectral patterns were built to extract features. Secondly, the corresponding VPM model group was established for each known type of discharge to predict the features for samples. Subsequently, the Tanimoto similarities between the samples and each known type of discharge were calculated to obtain the best match known category for each sample. Then, the reliability integrator discriminant analysis rule (IDAR) of the recognition results was calculated and the reliability space was divided. Different regions had different determination methods. Finally, the Tanimoto similarity and the IDAR of each region were used to double filter all discharge signals to determine and separate unknown samples. Experimental results show that the method has certain recognition effects.
|
Received: 27 June 2019
|
|
|
|
|
[1] 杜伯学, 朱闻博, 李进, 等. 换流变压器阀侧套管油纸绝缘研究现状[J]. 电工技术学报, 2019, 34(6): 1300-1309. Du Boxue, Zhu Wenbo, Li Jin, et al.Research status of oil-paper insulation of valve side bushing of converter transformer[J]. Transactions of China Elec- trotechnical Society, 2019, 34(6): 1300-1309. [2] 张伟超, 董青青, 赵洪, 等. 液-固复合介质对光纤法-珀局部放电超声响应强度影响分析[J]. 电工技术学报, 2019, 34(10): 2230-2238. Zhang Weichao, Dong Qingqing, Zhao Hong, et al.Analysis of the influence of liquid-solid composite media on the ultrasonic response strength of optical fiber-perot partial discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2230-2238. [3] 王彩雄. 基于特高频法的GIS局部放电故障诊断研究[D]. 北京: 华北电力大学, 2013. [4] Lapp A, Kranz H G.The use of the CIGRE data format for PD diagnosis applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(1): 102-112. [5] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277. Tang Zhiguo, Tang Mingze, Li Jinzhong, et al.Summary of research on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277. [6] 王国强. 油纸绝缘局部放电的特征提取与模式识别[D]. 保定: 华北电力大学, 2014. [7] 龙嘉川, 王先培, 代荡荡, 等. 基于改进S变换的超高频局部放电信号特征提取及分类[J]. 高电压技术, 2018, 44(11): 3649-3656. Long Jiachuan, Wang Xianpei, Dai Dangdang, et al.Feature extraction and classification of uhf partial discharge signals based on improved S transform[J]. High Voltage Technology, 2018, 44(11): 3649-3656. [8] 李恩文, 王力农, 宋斌, 等. 基于混沌序列的DGA数据并行聚类分析[J]. 电工技术学报, 2019, DOI: 10.19595/j.cnki.1000-6753.tces.181894. Li Enwen, Wang Linong, Song Bin, et al.Parallel clustering analysis of DGA data based on chaotic sequence[J]. Transactions of China Electrotechnical Society, 2019, DOI: 10.19595/j.cnki.1000-6753.tces. 181894. [9] 李恩文, 王力农, 宋斌, 等. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602. Li Enwen, Wang Linong, Song Bin, et al.Analysis of transformer oil chromatography based on improved fuzzy clustering algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4594-4602. [10] 李正明, 钱露先, 李加彬. 基于统计特征与概率神经网络的变压器局部放电类型识别[J]. 电力系统保护与控制, 2018, 46(13): 55-60. Li Zhengming, Qian Luxian, Li Jiabin.Partial discharge type identification of transformer based on statistical features and probabilistic neural net- works[J]. Power System Protection and Control, 2018, 46(13): 55-60. [11] 王菲菲, 阮爱民, 魏刚, 等. 基于卷积神经网络的开关柜局部放电故障识别[J]. 电气技术, 2019, 20(4): 76-81. Wang Feifei, Ruan Aimin, Wei Gang, et al.Discognition of partial discharge faults of switchgear based on convolutional neural network[J]. Electrical Engineering, 2019, 20(4): 76-81. [12] 高佳程, 曹雁庆, 朱永利, 等. 基于KELM-VPMCD方法的未知局部放电类型的模式识别[J]. 电力自动化设备, 2018, 38(5): 141-147. Gao Jiacheng, Cao Yanqing, Zhu Yongli, et al.Pattern recognition of unknown partial discharge type based on KELM-VPMCD method[J]. Electric Power Automation Equipment, 2018, 38(5): 141-147. [13] 贾亚飞, 朱永利, 高佳程, 等. 基于样本加权FCM聚类的未知类别局部放电信号识别[J]. 电力自动化设备, 2018, 38(12): 107-112. Jia Yafei, Zhu Yongli, Gao Jiacheng, et al.Identi- fication of partial discharge signals in unknown category based on sample weighted FCM clustering[J]. Electric Power Automation Equipment, 2018, 38(12): 107-112. [14] 高佳程, 朱永利, 贾亚飞, 等. 基于改进SVDD算法与马氏距离的未知局部放电类型的识别[J]. 电工技术学报, 2018, 33(15): 3510-3517. Gao Jiacheng, Zhu Yongli, Jia Yafei, et al.Identi- fication of unknown partial discharge types based on improved SVDD algorithm and Mahalanobis distance[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3510-3517. [15] Chan J C, Hui Ma, Saha T K.Automatic blind equalization and thresholding for partial discharge measurement in power transformer[J]. IEEE Transa- ctions on Power Delivery, 2014, 29(4): 1927-1938. [16] 马利洁, 朱永利, 郑艳艳. 基于并行变量预测模型的变压器故障诊断及优化研究[J]. 电力系统保护与控制, 2019, 47(6): 82-89. Ma Lijie, Zhu Yongli, Zheng Yanyan.Research on transformer fault diagnosis and optimization based on parallel variable prediction model[J]. Power System Protection and Control, 2019, 47(6): 82-89. [17] 曾佳, 樊红, 徐强. 互联网大众点评与商圈空间分布的餐饮商家协同推荐研究[J]. 测绘地理信息, 2018, 43(4): 92-94. Zeng Jia, Fan Hong, Xu Qiang.Research on the collaborative recommendation of catering business based on Internet public comment and business space distribution[J]. Surveying and Mapping Geographic Information, 2018, 43(4): 92-94. [18] 汤燕彬, 许榕生. 基于Tanimoto系数的JPEG碎片数据识别方法[J]. 计算机应用与软件, 2011, 28(9): 80-81, 92. Tang Yanbin, Xu Rongsheng.A JPEG fragment data recognition method based on tanimoto coefficient[J]. Computer Applications and Software, 2011, 28(9): 80-81, 92. [19] Kranz H G, Krump R.Partial discharge diagnosis using statistical optimization on a PC-based system[J]. IEEE Transactions on Electrical Insulation, 1992, 27(1): 93-98. [20] 朱德恒, 严璋, 谈克雄, 等. 电气设备状态监测与故障诊断技术[M]. 北京: 中国电力出版社, 2009. [21] 文俊浩, 舒珊. 一种改进相似性度量的协同过滤推荐算法[J]. 计算机科学, 2014, 41(5): 68-71. Wen Junhao, Shu Shan.A collaborative filtering recommendation algorithm for improving similarity measures[J]. Computer Science, 2014, 41(5): 68-71. [22] 王刘旺, 朱永利, 李莉, 等. 基于特征子集的变压器局部放电小样本类型识别[J]. 电测与仪表, 2015, 52(24): 40-45. Wang Liuwang, Zhu Yongli, Li Li, et al.Identi- fication of small sample types of partial discharge of transformer based on feature subset[J]. Journal of Electric Measurement & Instrumentation, 2015, 52(24): 40-45. [23] 罗颂荣, 程军圣, 杨宇. 基于本征时间尺度分解和变量预测模型模式识别的机械故障诊断[J]. 振动与冲击, 2013, 32(13): 43-48. Luo Songrong, Cheng Junsheng, Yang Yu.Mechanical fault diagnosis based on pattern recognition of intrinsic time scale decomposition and variable prediction model[J]. Journal of Vibration and Shock, 2013, 32(13): 43-48. |
|
|
|