|
|
Study on the Synergistic Anti-Aging Effect of Composite Thermal Stabilizers on the Insulation Paper by Molecular Modeling |
Liao Ruijin1, Wu Weiqiang1, Nie Shijun2, Liu Tuan1, Lü Cheng1, Zhang Shuqi3 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing University Chongqing 400044 China; 2. Changsha Electric Power Bureau Changsha 410000 China; 3. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract In order to reveal the micro mechanism of composite thermal stabilizers added in insulation paper on synergistic anti-aging characteristics during aging process, considering dicyan- diamide and melamine as the thermal stabilizers, thermal agents, β-D-glucopyranose, water molecule and small molecule acids which are main substance during aging process were computed with quantum chemistry method, thus the reactivity of different molecules was investigated by energy gaps of frontier orbital. Besides, four cellulose models containing water and acids which were added none, either and both of two thermal stabilizers were established, system variations of different modified models were investigated from two aspects, namely, number of hydrogen bonding and interactive energy between water, formic acid molecule and the cellulose molecules. The results show that: compared with β-D- glucopyranose, the reaction activity between the thermal stabilizers and water molecule, small molecule is stronger; the reaction activity between the thermal stabilizers and water molecule, small molecule acid differs, when added together, synergistic anti-aging effect could be achieved by focusing the advantages of them; the combination of dicyandiamide and melamine added in paper exists a synergistic effect in reducing the adsorption capacity of the cellulose molecules to water molecule and formic acid molecule.
|
Received: 08 October 2013
Published: 29 June 2015
|
|
|
|
|
[1] Yang Lijun, Liao Ruijin, Sun Caixin, et al. Influence of vegetable oil on the thermal aging of transformer paper and its mechanism[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 692-700. [2] 李军浩, 司文荣, 姚秀, 等. 油纸绝缘内部气隙缺陷电劣化过程中局部放电的测量和模拟[J]. 中国电机工程学报, 2009, 29(31): 128-134. Li Junhao, Si Wenrong, Yao Xiu, et al. Measurement and simulation of partial discharge in disc-void of oil-pressboard insulation with electrical degration process[J]. Proceedings of the CSEE, 2009, 29(31): 128-134. [3] 陈伟根, 蔚超, 凌云, 等. 油纸绝缘气隙放电特征信息提取及其过程划分[J]. 电工技术学报, 2011, 26(4): 7-12. Chen Weigen, Wei Chao, Ling Yun, et al. Feature information extraction of air-gap discharge in oil- paper insulation and its partition[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 7-12. [4] 周远翔, 孙清华, 李光范, 等. 空间电荷对油纸绝缘击穿和沿面闪络的影响[J]. 电工技术学报, 2011, 26(2): 27-33. Zhou Yuanxiang, Sun Qinghua, Li Guangfan, et al. Effect of space charge on breakdown and creeping discharge of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 27-33. [5] 刘仁庆. 纤维素化学基础[M]. 北京: 科学出版社, 1985. [6] 王世强, 张冠军, 魏建林, 等. 纸板的老化状态对其PDC特性影响的实验研究[J]. 中国电机工程学报, 2011, 31(34): 177-183. Wang Shiqiang, Zhang Guanjun, Wei Jianlin, et al. Experimental study of the aged states effects on pressboard PDC characteristics[J]. Proceedings of the CSEE, 2011, 31(34): 177-183. [7] Ese M H G, Liland K B. Oxidation of paper insulation in transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 939-946. [8] Emsley A M, Stevens G. Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers[J]. IEE Proceedings: Science, Measurement and Technology, 1994, 141(5): 324-334. [9] Saha J K, Darreniza M, Hill D J T. Investigating the effects of oxidation and thermal degradation on electrical and chemical properties of power trans- formers insulation[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1359-1367. [10] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Ruijin, Yang Lijun, Zheng Hanbo, et al. Reviews on oil-paper insulation thermal aging in power trans- formers[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 1-12. [11] Yang Lijun, Liao Ruijin, Sun Caixin, et al. Influence of natural ester on thermal aging characteristics of oil-paper in power transformers[J]. European Transac- tions on Electrical Power, 2010, 20(8): 1223-1236. [12] Oommen T V, Prevost T A. Cellulose insulation in oil-filled power transformers: part II–maintaining insulation integrity and life[J]. IEEE Electrical Insula- tion Magazine, 2006, 22(2): 5-14. [13] Lundgaard L E, Hansen W, Linhjell D, et al. Aging of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 230- 239. [14] 张福州, 廖瑞金, 杨丽君, 等. 油纸绝缘热老化过程中热稳定剂对油的影响[J]. 高电压技术, 2011, 37(10): 2437-2442. Zhang Fuzhou, Liao Ruijin, Yang Lijun, et al. Influence of thermal stabilisers on oil during thermal aging process[J]. High Voltage Engineering, 2011, 37(10): 2437-2442. [15] 杨雁, 袁磊, 王谦, 等. 不同复合热稳定剂对矿物油-改性纸绝缘系统热老化特性的影响[J]. 高电压技术, 2013, 39(5): 1121-1127. Yang Yan, Yuan Lei, Wang Qian, et al. Influence of different compound thermal stabilizers on aging characteristics of mineral oil-modified paper insulation system[J]. High Voltage Engineering, 2013, 39(5): 1121-1127. [16] Sun Hongyan, Law Chung K. Chemical reactivity analysis of the CO+OH and CO+HO 2 reactions[J]. Journal of Molecular Structure: Theochem, 2008, 862: 138-147. [17] Alder B J, Wainwright T E. Phase transition for a hard sphere system[J]. The Journal of Chemical Physics, 1957, 27(5): 1208-1209. [18] 陶长贵, 冯海军, 周健, 等. 氧气在聚丙烯内吸附和扩散的分子模拟[J]. 物理化学学报, 2009, 25(7): 1373-1378. Tao Changgui, Feng Haijun, Zhou Jian, et al. Molecular simulation of oxygen adsorption and diffusion in polypropylene[J]. Acta Physico-Chimica Sinica, 2009, 25(7): 1373-1378. [19] 廖瑞金, 朱孟兆, 周欣, 等. 油纸复合介质中水分子扩散行为的分子动力学模拟[J]. 物理化学学报, 2011, 27(4): 815-824. Liao Ruijin, Zhu Mengzhao, Zhou Xin, et al. MoIecuIar dynamics simulation of the diffusion behavior of water molecuies in oil and cellulose composite media[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 815-824. [20] Liao Ruijin, Zhu Mengzhao, Yang Lijun, et al. Molecular dynamics study of water molecular diffusion in oil-paper insulation materials[J]. Physica B, 2011, 406(5): 1162-1168. [21] 廖瑞金, 聂仕军, 周欣, 等. 物理改性纤维素绝缘材料亲水性行为的分子动力学模拟[J]. 高电压技术, 2013, 39(1): 1-7. Liao Ruijin, Nie Shijun, Zhou Xin, et al. Molecular dynamics simulation on the hydrophilicity of physical modification cellulose insulation materials[J]. High Voltage Engineering, 2013, 39(1): 1-7. [22] Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass[J]. Macromolecules, 1985, 18(7): 1467-1478. [23] Maple J R, Hwang M J, Stockfisch T P, et al. Derivation of class II force fields. I. methodology and quantum force field for the alkyl functional group and alkane molecules[J]. Journal of Computational Chemistry, 1994, 15(2): 162-182. [24] Andrea T A, Swope W C, Andersen H C. The role of long ranged forces in determining the structure and properties of liquid water[J]. The Journal of Chemical Physics, 1984, 79(9): 4576-4585. [25] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3691. [26] Martys N S, Mountain R D. Velocity verlet algorithm for dissipative particle dynamics based models of suspensions[J]. Physical Review E, 1999, 59(3): 3733- 3736. [27] Ewald P P. Evaluation of optical and electrostatic lattice potentials[J]. Annalen der Physik, 1921, 369(3): 253-287. [28] Pearson R G. Absolute electronegativity and hardness: applications to organic chemistry[J]. The Journal of Organic Chemistry, 1989, 54(6): 1423-1430. [29] 陈嘉川, 谢益民, 李彦春. 天然高分子科学[M]. 北京:科学出版社, 2007. |
|
|
|