|
|
Simulation of Diffusion of Moisture in Insulation Paper and the Affect on Mechanical Properties of the Paper |
Zhu Mengzhao1, Liao Ruijin2, Du Xiuming1, Zhou Jiabin1, Zhu Wenbing1 |
1. State Grid Shandong Electric Power Research Institute Jinan 250002 China; 2. Chongqing University Chongqing 400030 China |
|
|
Abstract The diffusion behavior of water molecules in amorphous cellulose and their destructive effect on the mechanical properties of cellulose were investigated by molecular dynamics. Both the free volumes of amorphous cells and water molecule-cellulose interaction affect the diffusion of water molecules. The diffusion coefficient of water molecules has an excellent correlation with water molecule-cellulose interaction and the average hydrogen bonds between each water molecule and cellulose; however, this relationship was not apparent between the diffusion coefficient and free volume. It shows a weakening trend in cellulose cohesive energy density, solubility parameters and the mechanical properties with the increase of water content. The higher the water content one amorphous cellulose own, the bigger the interachain distance of cellulose molecules is, which indicates that the intermolecular interaction of cellulose molecules would be weakened by the water greatly.
|
Received: 03 September 2014
Published: 29 June 2015
|
|
|
|
|
[1] Prevost T A, Oommen T V. Cellulose insulation in oil-filled power transformers: part I-history and develop- ment[J]. IEEE Electrical Insulation Magazine, 2006, 22(1): 28-35. [2] Oommen T V, Thomas A P. Cellulose insulation in oil-filled power transformers: part II-maintaining insulation integrity and life[J]. IEEE Electrical Insula- tion Magazine, 2006, 22(2): 5-14. [3] Guo Yilu, Wu Peiyi. Investigation of the hydrogen- bond structure of cellulose diacetate by two-dimen- sional infrared correlation spectroscopy[J], Carbohydrate Polymers, 2008, 74(3): 509-513 [4] Hinterstoisser B, Akerholm M, Lennart Salmen L. Load distribution in native cellulose[J]. Biomacro- molecules, 2003, 4(5): 1232-1237 [5] LeNeveu D M, Rand R P, Parsegian V A. Measurement of forces between lecithin bilayers[J]. Nature, 1976, 259(5544): 601-603. [6] Lee S H, Rossky P J. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces - a molecular dynamics simulation study[J]. Journal of Chemical Physics, 1994, 100(4): 3334-3345. [7] Heiner A P, Teleman O. Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity[J]. Langmuir, 1997, 13(3): 511- 518. [8] Heiner A P, Kuutti L, Teleman O. Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations [J]. Carbohydrate Research, 1998, 306(1-2): 205-220. [9] Lundgaard L E, Hansen W, Linhjell D. Ageing of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 230- 239. [10] Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403. [11] Chen W, Lickfield G C, Charles Q Y. Molecular modeling of cellulose in amorphous state: part 1: model building and plastic deformation study[J]. Polymer, 2004, 45(3): 1063-1071. [12] Chen W, Lickfield G C, Charles Q Y. Molecular modeling of cellulose in amorphous state: part 2: effects of rigid and flexible crosslinks on cellulose[J]. Polymer, 2004, 45(3): 7357-7365. [13] Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass[J]. Macromolecules, 1985, 18(7): 1467-1478. [14] Brandrup J, Immergut E H, Grulke E A. Polymer handbook[M]. New York: Wiley-Interscience Publica- tion, 1999. [15] Maple J, Dinur U, Hagler A T. Derivation of forcefields for molecular mechanics and dynamics from ab initio energy surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5350-5354. [16] Maple J R, Hwang M J, Stockfisch T P, et al. Deriva- tion of class II force fields. 1. methodology and quantum forcefield for the alkyl functional group and alkane molecules[J]. Journal of Computational Chemistry, 1994, 15(2): 162-182. [17] Maple J R, Hwang M J, Stockfisch T P, et al. Derivation of class II forcefields. 3. characterization of a quantum forcefield for the alkanes[J]. Israel Journal of Chemistry, 1994, 34(2): 195 -231. [18] Sun H, Mumby S J, Maple J R, Hagler A T. An ab initio CFF93 all-atom forcefield for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978-2987. [19] Sun H. Ab initio calculations and forcefield develop- ment for computer simulation of polysilanes[J]. Macro- molecules, 1995, 28(3): 701-712. [20] Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic forcefield for molecular simulations[J]. Journal of Physical Chemistry, 1990, 94(26): 8897-8909. [21] Andrea T A, Swope W C, Andersen H C. The role of long ranged forces in determining the structure and properties of liquid water[J]. Journal of Physical Chemistry, 1983, 79(9): 4576-4581. [22] Berendsen H J C, Postma J P M, Funsteren W F. Molecular dynamics with coupling to an external bath[J]. Journal of Physical Chemistry, 1984, 81(8): 3684-3693. [23] Ewald P P. Die berechnung optischer und elektros- tatischer gitterpotentiale[J]. Annalen der Physik, 1921, 369(3): 253-287. [24] Materials Studio 4.0, discover/accelrys: San Diego, Ca, 2005. [25] Hildebrand J H, Scott R L. The solubility of nonelec- trolytes[M]. 3rd ed. New York: Reinhold, 1950. [26] Hansen C M. 50 years with solubility parameters-past and future[J]. Progress in Organic Coatings, 2004, 51(1): 77-84. [27] Utracki L A. Polymer alloys and blends[M]. Munich: Hanser, 1989. [28] Fried J R, Sadat Akhavi M, Mark J E. Molecular simulation of gas permeability poly (2, 6-dimethyl-1, 4-phenylene oxide)[J]. Journal of Membrane Science, 1998, 149(1): 115-126. |
|
|
|