|
|
Simulation of the Discharge Activity of Neural Network under Transcranial Magneto-Acousto-Electrical Stimulation Based on Cortical Neuron Model |
Zhang Shuai1,2, Xu Jiayue1,2, Li Mengdi1,2, Zhao Mingkang1,2, Xu Guizhi1,2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health Hebei University of Technology Tianjin 300130 China |
|
|
Abstract The cortical neural network was built based on the real neuron model of the cerebral cortex, and the electrical response characteristics of the model under transcranial Magneto- acousto-electrical stimulation (TMAES) were simulated and analyzed. The short-time Fourier transform method was used to conduct the time-frequency joint analysis of neuronal local field potentials (LFPs) signals under different stimulation methods and different TMAES stimulation parameters. The results show that the TMAES method can achieve a stimulating effect similar to the neuron's own synaptic activation and step current stimulation. The electrical activity response of the neurons at different locations under TMAES is different, that is, the membrane voltage near the cell body changes more obviously, and the LFPs energy intensity is the largest. With the increase of modulation frequency and stimulation current, the energy intensity of the LFPs signal in the neural network first increases and subsequently decreases. It is indicated that TMAES can promote and inhibit the neural electrical activity, changing the stimulation parameters can realize the regulation of biological neural activity. The results help to reveal the neural mechanism of TMAES, and provide references for its application in neuromodulation and neurological disease treatment.
|
Received: 11 July 2020
|
|
|
|
|
[1] 伊国胜, 王江, 魏熙乐, 等. 无创式脑调制的神经效应研究进展[J]. 科学通报, 2016, 61(8): 819-834. Yi Guosheng, Wang Jiang, Wei Xile, et al.Deve-lopments of neural effects induced by noninvasive brain modulation[J]. Chinese Science Bulletin, 2016, 61(8): 819-834. [2] 刘婧, 刘国强. 电粒子成像方法及其正问题数值研究[J]. 电工技术学报, 2020, 35(22): 4621-4626. Liu Jing, Liu Guoqiang.Electrical particles imaging method and numerical study on the forward pro-blem[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4621-4626. [3] 黎国锋, 邱维宝, 钱明, 等. 超声神经调控技术与科学仪器[J]. 生命科学仪器, 2017, 15(1): 3-8. Li Guofeng, Qiu Weibao, Qian Ming, et al.Ultrasonic neuromodulation technology and scientific equipment[J]. Life Science Instruments, 2017, 15(1): 3-8. [4] 熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686. Xiong Hui, Wang Yuling, Fu Hao, et al.An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(4): 679-686. [5] Rezayat E, Toostani I G.A review on brain stimu-lation using low intensity focused ultrasound[J]. Basic & Clinical Neuroscience, 2016, 7(3): 187-194. [6] 刘素贞, 魏建, 张闯, 等. 基于FPGA的超声信号自适应滤波与特征提取[J].电工技术学报, 2020, 35(13): 2870-2878. Liu Suzhen, Wei Jian, Zhang Chuang, et al.Adaptive filtering and feature extraction of ultrasonic signal based on FPGA[J]. Transactions of China Electro-technical Society, 2020, 35(13): 2870-2878. [7] 郭磊, 刘东钊, 黄凤荣, 等. 基于突触可塑性的自适应脉冲神经网络在高斯白噪声刺激下的抗扰功能研究(英文)[J]. 电工技术学报, 2020, 35(2): 225-235. Guo Lei, Liu Dongzhao, Huang Fengrong, et al.Research on disturbance rejection of adaptive spiking neural network based on synapticplasticity under white gaussian noise[J]. Transactions of China Elec-trotechnical Society, 2020, 35(2): 225-235. [8] 刘运华, 张波, 谢帆, 等. 多尺度和多物理场的电力电子变换器建模方法初探[J]. 电力系统自动化, 2020, 44(16): 61-69. Liu Yunhua, Zhang Bo, Xie Fan, et al.Preliminary study on modeling methods with multiscale and multiphysics for power electronic converters[J]. Automation of Electric Power Systems, 2020, 44(16): 61-69. [9] 赵禹, 杨仕友. 无线电能传输系统的频率跟踪技术与控制方法[J]. 电机与控制学报, 2020, 24(9): 22-29. Zhao Yu, Yang Shiyou.Frequency tracking and controlling of wireless power transfer system[J]. Electric Machines and Control, 2020, 24(9): 22-29. [10] Li Dandan, Qiao Zhenyang, Yang Na, et al.Study on vector magnetic properties of magnetic materials using hybrid hysteresis model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 292-296. [11] 赵靖英, 周思诺, 高佳雄. 智能电动机保护器的电磁辐射定量评估方法研究[J]. 电机与控制学报, 2017, 21(6): 34-43. Zhao Jingying, Zhou Sinuo, Gao Jiaxiong.Research on quantitative assessment method of electromagnetic radiation of intelligent motor protector[J]. Electric Machines and Control, 2017, 21(6): 34-43. [12] Norton S J.Can ultrasound be used to stimulate nerve tissue?[J]. BioMedical Engineering OnLine, 2003, 2(1): 6-14. [13] 李慧雨, 周晓青, 张顺起, 等. 基于磁声耦合效应的聚焦电刺激方法的初探[J]. 生物医学工程研究, 2015, 34(4): 201-206. Li Huiyu, Zhou Xiaoqing, Zhang Shunqi, et al.Approach for focused electric stimulation based on the magneto-acoustic effect[J]. Journal of Biomedical Engineering Research, 2015, 34(4): 201-206. [14] Yuan Yi, Li Xiaoli.Theoretical analysis of trans-cranial hall-effect stimulation based on passive cable model[J]. Chinese Physics B, 2015, 24(12): 373-378. [15] 刘世坤, 张鑫山, 刘志朋, 等. 经颅磁声耦合电刺激技术应用于小鼠的实验研究[J]. 生物医学工程研究, 2018, 37(1): 11-15. Liu Shikun, Zhang Xinshan, Liu Zhipeng, et al.Experimental study in mice on the technology of transcranial magneto-acoustic coupling electrical stimulation[J]. Journal of Biomedical Engineering Research, 2018, 37(1): 11-15. [16] 张帅, 崔琨, 史勋, 等. 经颅磁声电刺激参数对神经元放电模式的影响分析[J]. 电工技术学报, 2019, 34(18): 3741-3749. Zhang Shuai, Cui Kun, Shi Xun, et al.Effect analysis of transcranial magnetic-acousticao-electrical stimu-lation parameters on neural firing patterns[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3741-3749. [17] 张帅, 史勋, 尹宁, 等. 基于H-H神经元模型的经颅磁声刺激对神经元放电活动的影响[J]. 高电压技术, 2019, 45(4): 122-128. Zhang Shuai, Shi Xun, Yin Ning, et al.Effects of transcranial magneto-acoustical stimulation on neuronal firing activities based on H-H neuron model[J]. High Voltage Engineering, 2019, 45(4): 122-128. [18] Michael W R, Costas A, Rodrigo P, et al.A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents[J]. Neuron, 2013, 79(2): 375-390. [19] Pinto D J, Jones S R, Kaper T J, et al.Analysis of state-dependent transitions in frequency and long-distance coordination in a model oscillatory cortical circuit[J]. Journal of Computational Neuroence, 2003, 15(2): 283-298. [20] Shaul D.A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data[J]. Frontiers in Neuroscience, 2007, 1(1): 7-18. [21] Toledo R M, Wang Yun, Gupta A, et al.Interneurons of the neocortical inhibitory system[J]. Nature Reviews Neuroscience, 2004, 5(10): 793-807. [22] Einevoll G T.Modeling the spatial reach of the LFP[J]. Neuron, 2011, 72(5): 859-872. [23] Gibson J R, Beierlein M, Connors B W.Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4[J]. Neurophysiol, 2005, 93(10): 467-480. |
|
|
|