|
|
Comparative Research on DC Side Oscillation Suppression Methods for Inverter-IPMSM System Caused by Impedance Mismatch |
Fang Xiaochun, Zhong Zhihong, Yang Zhongping, Lin Fei |
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract Due to mismatch of output impedances of LC and input impedance of inverter-motor system,inverter-IPMSM(Interior Permanent Magnet Synchronous Motor) system will lose stability with a large output power.That means DC current and voltage oscillation.For stability analysis,input admittance formulas of inverter-IPMSM system under double current control are derived.Reference induction motor system oscillation suppression methods and combined with IPMSM torque formula,two oscillation suppression methods based on d-axis voltage and current command separately are proposed.These two methods are compared with the existing oscillation suppression methods based on q-axis voltage and current command separately.Input admittance formulas of inverter-IPMSM system with oscillation suppression are derived.The Nyquist theorem is adopted to verify the validity of the oscillation suppression methods.According to the motor model and control system model,the oscillation suppression method based on q-axis voltage is considered to be the best.Experimental verification of the viewpoints is carried out.
|
Received: 19 August 2016
Published: 18 August 2017
|
|
|
|
|
[1] Mosskull H,Galic J,Wahlberg B.Stabilization of induction motor drives with poorly damped input filters[J].IEEE Transactions on Industrial Electronics,2007,54(5):2724-2734. [2] 赵雷廷,刁利军,董侃,等.地铁牵引变流器-电机系统稳定性控制[J].电工技术学报,2013,28(6):101-107. Zhao Leiting,Diao Lijun,Dong Kan,et al.Research on stabilization control for metro traction converter-motor system[J].Transactions of China Electrotechnical Society,2013,28(6):101-107. [3] Lee W,Sul S.DC-link voltage stabilization for reduced DC-link capacitor inverter[J].IEEE Transactions on Industrial Applications.2014,50(1):1740-1744. [4] 方晓春.城轨列车永磁同步牵引电机控制与逆变器直流侧振荡抑制研究[D].北京:北京交通大学,2016. [5] Maheshwari R,Munk-Nielsen S,Lu K.An active damping technique for small DC-link capacitor based drive system[J].IEEE Transactions on Industrial Applications.2010,9(2):1205-1209. [6] Mohamed A,Radwan A,Lee T.Decoupled reference voltage based active DC-Link stabilization for PMSM drives with tight-speed regulation[J].IEEE Transactions on Industrial Electronics,2012,59(12):4523-4536. [7] 高雅,刘卫国,骆光照.牵引机车用永磁同步电机断电-重投控制系统研究[J].电工技术学报,2016,31(6):100-107. Gao Ya,Liu Weiguo,Luo Guangzhao.Research of power down-rejoining on control system for permanent magnet synchronous motor used in traction engines[J].Transactions of China Electrotechnical Society,2016,31(6):100-107. [8] 方晓春,胡太元,林飞,等.基于交直轴电流耦合的单电流调节器永磁同步电机弱磁控制[J].电工技术学报,2015,30(2):140-147. Fang Xiaochun,Hu Taiyuan,Lin Fei,et al.Single current regulator flux-weakening control of PMSM based on the D-Q current cross-coupling effect[J].Transactions of China Electrotechnical Society,2015,30(2):140-147. [9] Magne P,Marx D,Nahid-Mobarakeh B,et al.Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor:impact on the domain of attraction[J].IEEE Transactions on Industrial Applications,2012,48(3):878-887. [10]Liu Xinyun,Forsyth A,Cross A.Negative input-resistance compensator for a constant power load[J].IEEE Transactions on Industrial Electronics,2007,54(6):3188-3196. [11]Liutanakul P,Awan A,Pierfederici S,et al.Linear stabilization of a DC bus supplying a constant power load:a general design approach[J].IEEE Transactions on Power Electronics,2010,25(2):475-488. [12]Maheshwari R,Munk-Nielsen S,Lu K.An active damping technique for small DC-link capacitor based drive system[J].IEEE Transactions on Industrial Electronics,2010,9(2):1205-1209. [13]Feng Xiaogang,Liu Jinjun,Lee F C.Impedance specifications for stable DC distributed power systems[J].IEEE Transactions on Power Electronics,2002,17(2):157-162. [14]赵雷廷.地铁牵引电传动系统关键控制技术及性能优化研究[D].北京:北京交通大学,2014. |
|
|
|