|
|
Service Status Identification Method of Miniature Circuit Breaker Based on Mechanical Characteristics |
Li Kui1,2, Wang Peng1,2, Hu Bokai1,2, Zhang Haotian1,2, Wang Yao1,2 |
1. State Key Laboratory of Intelligent Power Distribution Equipment and System Hebei University of Technology Tianjin 300401 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300401 China |
|
|
Abstract Miniature circuit breakers (MCBs) are important protection devices in low-voltage distribution systems. They can automatically de-energize the power supply immediately in the event of electrical failures, protecting the power distribution system from fire or other serious hazards. MCBs are subject to electrical and mechanical stresses during service. The operational performance of an MCB can gradually degrade with the increasing number of operations, which affects the safe operation of the power distribution system. Therefore, it is of great significance to accurately identify the service status of an MCB. Firstly, the basic structure of the circuit breaker is analyzed, and the irregular parts in the operating mechanism are processed equivalently. The closing process can be divided into two stages: empty-stroke and over-stroke. The relationship between the handle operating torque and rotation angle is investigated. A dynamic simulation model of the operating mechanism is built using virtual prototype technology to simulate the actual closing motion process of the part. Moreover, the changes in the handle operating torque during closing are studied. The mechanical characteristics representing the state of service, the initial closing angle, and the maximum torque of the closing are extracted. Secondly, the contact’s overtravel degradation characteristics and the contact spring’s performance degradation characteristics are analyzed, and the relationship between the service performance degradation characteristics of the MCB and the characteristic parameters of handle operating torque is determined. Contact wear, contact spring degradation, or fracture of an MCB can occur after arc erosion and mechanical fatigue damage, which reflects the mechanical characteristic quantity. The results show that the contact wear can linearly increase the initial closing angle and decrease the maximum torque. Additionally, the degradation of the contact spring only reduces the maximum torque without affecting the initial closing angle. It is also found that the contact spring fracture may cause a stepwise decrease in the maximum torque. Finally, based on the degree of contact wear and the state of the contact spring, the service state of an MCB can be categorized into four levels: normal, degraded, dangerous, and faulty. Then, the threshold range of the initial closing angle and the maximum torque can be determined under different levels. A service state identification method based on mechanical characteristics can be proposed. An experimental platform was set up to simulate contact wear and spring fracture. When compared, the simulation results show the same trend of changes as the experimental results, with an acceptable range of maximum relative errors. This paper presents a novel approach to evaluating the reliability and state identification of the MCB.
|
Received: 11 June 2024
|
|
|
|
|
[1] Li Xiaodong, Liu Xiangjun, Xu Zhihong.Simulation and research on short circuit breaking arc characteristics of micro circuit breaker[C]//The Proceedings of the 18th Annual Conference of China Electrotechnical Society, Singapore, 2024: 32-40. [2] 何志鹏, 赵虎. 微型断路器电寿命评估[J]. 电工技术学报, 2022, 37(4): 1031-1040. He Zhipeng, Zhao Hu.Electrical lifespan evaluation of miniature circuit breakers[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 1031-1040. [3] Tahvilzadeh M, Aliyari-Shoorehdeli M, Razi-Kazemi A A. Model-aided approach for intelligent fault detection system for SF6 high-voltage circuit breaker with spring operating mechanism[J]. IEEE Transa- ctions on Power Delivery, 2023, 38(5): 3356-3365. [4] 范兴明, 许洪华, 李涛, 等. 基于SMA-VMD和能量熵的高压断路器故障诊断[J]. 高电压技术, 2024, 50(12): 5248-5258. Fan Xingming, Xu Honghua, Li Tao, et al.Fault diagnosis of high-voltage circuit breakers based on SMA-VMD and energy entropy[J]. High Voltage Engineering, 2024, 50(12): 5248-5258. [5] 李辰辉, 褚继峰, 龙潇, 等. 基于弧触头接触振动特征分析的高压SF6断路器电寿命在线监测方法[J]. 电工技术学报, 2024, 39(15): 4883-4895. Li Chenhui, Chu Jifeng, Long Xiao, et al.Online monitoring method of electrical life of high voltage SF6 circuit breaker based on analysis of arcing contact vibration characteristics[J]. Transactions of China Electrotechnical Society, 2024, 39(15): 4883-4895. [6] 孙玉伟, 罗林根, 陈敬德, 等. 含噪背景下基于盲源分离与NSVDD的断路器机械故障诊断方法[J]. 高电压技术, 2022, 48(3): 1104-1112. Sun Yuwei, Luo Lingen, Chen Jingde, et al.Mechanical fault diagnosis method of circuit breaker based on blind source separation and NSVDD under noisy background[J]. High Voltage Engineering, 2022, 48(3): 1104-1112. [7] 段梵, 李先允, 单光瑞, 等. 基于融合特征和残差神经网络的10 kV高压断路器机械故障声纹识别方法[J]. 高压电器, 2025, 61(3): 205-213. Duan Fan, Li Xianyun, Shan Guangrui, et al.Voiceprint recognition method for mechanical faults of 10 kV circuit breaker based on fusion feature residual neural network[J]. High Voltage Apparatus, 2025, 61(3): 205-213. [8] 钟声, 李晓洋, 梁胜乐, 等. 基于线圈电流信号及动态时间规整的高压断路器状态评估方法[J]. 高压电器, 2023, 59(4): 24-31. Zhong Sheng, Li Xiaoyang, Liang Shengle, et al.Condition assessment method on high voltage circuit breaker based on coil current signal and dynamic time warping[J]. High Voltage Apparatus, 2023, 59(4): 24-31. [9] Razi-Kazemi A A, Niayesh K, Nilchi R. A probabi- listic model-aided failure prediction approach for spring-type operating mechanism of high-voltage circuit breakers[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1280-1290. [10] 胡博凯, 李奎, 牛峰, 等. 低压断路器机械特性状态监测方法研究[J]. 电工技术学报, 2022, 37(13): 3317-3330. Hu Bokai, Li Kui, Niu Feng, et al.Research on condition monitoring method of mechanical characteristics of low-voltage circuit breaker[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3317-3330. [11] 韩翔宇, 纽春萍, 何海龙, 等. 电磁式断路器状态监测与智能评估技术综述[J]. 电工技术学报, 2023, 38(8): 2191-2210. Han Xiangyu, Niu Chunping, He Hailong, et al.Review of condition monitoring and intelligent assessment of electromagnetic circuit breaker[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2191-2210. [12] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号的高压断路器触头超程状态识别[J]. 电机与控制学报, 2019, 23(6): 27-34. Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Over-travel state identification for electrical contact of high-voltage circuit breaker using vibration signature[J]. Electric Machines and Control, 2019, 23(6): 27-34. [13] 刘会兰, 常庚垚, 赵书涛, 等. 溯源弹簧形变过程的断路器振动信号递归量化分析辨识方法[J]. 电工技术学报, 2024, 39(8): 2567-2577. Liu Huilan, Chang Gengyao, Zhao Shutao, et al.Circuit breaker state identification method based on tracing spring deformation process and recurrence quantitative analysis of vibration signals[J]. Transa- ctions of China Electrotechnical Society, 2024, 39(8): 2567-2577. [14] 马莉, 霍耀佳, 吴杨, 等. 基于VMD和KFCM- SVM的高压断路器声振联合故障诊断方法[J]. 高压电器, 2024, 60(8): 53-62. Ma Li, Huo Yaojia, Wu Yang, et al.Acoustic and vibration joint fault diagnosis method of high voltage circuit breaker based on VMD and KFCM-SVM[J]. High Voltage Apparatus, 2024, 60(8): 53-62. [15] 卢扬, 李永丽. 基于实时状态评估与剩余寿命计算的高压断路器预测性维护策略[J]. 高电压技术, 2022, 48(7): 2716-2726. Lu Yang, Li Yongli.Predictive maintenance policy for high-voltage circuit breakers based on real-time state estimation and remanent useful life calcu- lation[J]. High Voltage Engineering, 2022, 48(7): 2716-2726. [16] 孙曙光, 杨飞龙, 陈静, 等. 基于振动-电流广域特征与软共享机制的断路器多故障诊断[J]. 仪器仪表学报, 2024, 45(1): 46-59. Sun Shuguang, Yang Feilong, Chen Jing, et al.Multi-fault diagnosis of circuit breaker based on vibration-current wide-domain features and soft sharing mechanism[J]. Chinese Journal of Scientific Instrument, 2024, 45(1): 46-59. [17] 赵书涛, 黄伟杰, 刘会兰, 等. 高压断路器触头烧蚀及电寿命评估研究综述[J]. 高电压技术, 2024, 50(2): 489-502. Zhao Shutao, Huang Weijie, Liu Huilan, et al.Review of research on contact ablation and electrical life assessment of high-voltage circuit breakers[J]. High Voltage Engineering, 2024, 50(2): 489-502. [18] 王振兴, 刁目鑫, 肖光宇, 等. 基于QPSO-SVR算法的SF6断路器触头烧蚀状态评估[J]. 高电压技术, 2023, 49(9): 3919-3930. Wang Zhenxing, Diao Muxin, Xiao Guangyu, et al.Evaluation of contact ablation state of SF6 circuit breaker based on QPSO-SVR algorithm[J]. High Voltage Technology, 2023, 49(9): 3919-3930. [19] Li Kui, Zhao Chengchen, Niu Feng, et al.Electrical performance degradation model and residual electrical life prediction for AC contactor[J]. IEEE Transactions on Components, Packaging and Manufa- cturing Technology, 2020, 10(3): 400-417. [20] 赵成晨, 李奎, 胡博凯, 等. 变应力条件下低压断路器剩余电寿命预测[J]. 中国电机工程学报, 2022, 42(21): 8004-8016. Zhao Chengchen, Li Kui, Hu Bokai, et al.Residual electrical life prediction of low-voltage circuit breakers under varied stress[J]. Proceedings of the CSEE, 2022, 42(21): 8004-8016. [21] 孔倩, 赵义豪, 姜根山, 等. 流场声学层析成像测量方法仿真和实验研究[J/OL]. 仪器仪表学报, 2024: 1-12. (2024-08-12). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YQXB2024080900X&dbname=CJFD&dbcode=CJFQ. Kong Qian, Zhao Yihao, Jiang Genshan, et al. Simulation and experimental study on acoustic tomography measurement method of flow field[J/OL]. China Industrial Economics, 2024: 1-12. (2024- 08-12). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YQXB2024080900X&dbname=CJFD&dbcode=CJFQ. [22] 李东晖, 周学, 王傲, 等. 考虑制造参数的批量化真空交流接触器机械寿命预测[J]. 电工技术学报, 2023, 38(7): 1982-1990. Li Donghui, Zhou Xue, Wang Ao, et al.Mechanical life prediction of batch electromagnetic switches considering manufacturing parameters[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(7): 1982-1990. |
|
|
|