|
|
Large Signal Stability Control Method of DC Microgrid with Analogous Virtual Synchronous Generator and Flexible Load |
Wang Hui, Zhao Shuqiang, Chen Xubo, Meng Jianhui, Tian Yanjun, Gao Benfeng |
Hebei Key Laboratory of Distributed Energy Storage and Micro-Grid North China Electric Power University Baoding 071003 China |
|
|
Abstract To ensure the stable operation of the system, the academic community has conducted a large amount of research on small signal modeling and stability analysis of DC microgrids. However, the conclusions of small signal analysis are only valid within a local range, and the size of this range is uncertain. Therefore, methods based on small signal analysis are difficult to solve the problem of large disturbance instability in DC microgrids. When the system switches from the initial steady-state point to the target steady-state point, oscillation instability often occurs when the load changes significantly. To this end, a stable control method considering the control parameters of analogous virtual synchronous generator (AVSG) and flexible load regulation is proposed. Firstly, establish a Takagi Sugeno (TS) fuzzy model for the DC microgrid. Then, the Lyapunov function is constructed with the help of linear matrix inequality (LMI) tool to estimate the domain of attraction of the target steady-state point. If the largest estimated domain of attraction (LEDA) of the target steady-state point includes the initial steady-state point, then the system is asymptotically stable, otherwise there is a risk of instability. At this point, utilizing the flexible and adjustable virtual damping, virtual inertia, and flexible load resources within the DC microgrid, the LEDA of the target steady-state point can directly or indirectly include the initial steady-state point, thereby eliminating the risk of oscillation instability. To verify the effectiveness of the proposed method, hardware in the loop (HIL) simulation experiments have been built.The test results of control parameters show that adjusting the size of kd and Cvir until LEDA includes the initial steady-state point can avoid the risk of system oscillation instability. In addition, the test results of the operating trajectory show that by adjusting the operating trajectory of the system's operating points through flexible loads, while meeting the final load demand, the domain of attraction of the latter steady-state point sequentially includes the previous steady-state point, which can ensure the stable operation of the system. Finally, the LEDA error test results show that the estimation of the attraction domain in this example has a certain degree of conservatism, and the proposed method is suitable for this scenario. Conclusions can be drawn that: (1) Improving control parameters such as virtual damping and virtual inertia, as well as operating point trajectories based on domain of attraction theory, so that the LEDA of the target steady-state point directly or indirectly includes the initial steady-state point, is a practical and effective method to ensure stable system operation. (2) Compared with the dichotomy method, the method of adjusting the load power to the LEDA boundary can reduce the number of intermediate operating points and thus shorten the entire switching process. (3) Estimating the domain of attraction based on the TS fuzzy model and visually displaying the stability analysis results in a graphical manner can be used to guide the parameter tuning of AVSG.
|
Received: 30 January 2024
|
|
|
|
|
[1] 姜淞瀚, 彭克, 徐丙垠, 等. 直流配电系统示范工程现状与展望[J]. 电力自动化设备, 2021, 41(5): 219-231. Jiang Songhan, Peng Ke, Xu Bingyin, et al.Current situation and prospect of demonstration projects of DC distribution system[J]. Electric Power Automation Equipment, 2021, 41(5): 219-231. [2] 张泽华, 宋桂英, 张晓璐, 等. 考虑恒功率负载的直流微电网稳定性与鲁棒性控制策略[J]. 电工技术学报, 2023, 38(16): 4391-4405. Zhang Zehua, Song Guiying, Zhang Xiaolu, et al.Stability and robustness control strategy of DC microgrid considering constant power load[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4391-4405. [3] 张昊, 李昱, 尹亚飞, 等. 直流微电网集成式高品质协同控制策略[J]. 电工技术学报, 2023, 38(23): 6345-6358. Zhang Hao, Li Yu, Yin Yafei, et al.An integrated high-quality cooperative control strategy of DC microgrids[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6345-6358. [4] 陈庆, 袁栋, 袁宇波, 等. 多电压等级直流配电系统小信号稳定性评估方法[J]. 电力系统自动化, 2022, 46(21): 80-88. Chen Qing, Yuan Dong, Yuan Yubo, et al.Small-signal stability assessment method for DC distribution system with multiple voltage levels[J]. Automation of Electric Power Systems, 2022, 46(21): 80-88. [5] 王晴, 刘增, 韩鹏程, 等. 基于变流器输出阻抗的直流微电网下垂并联系统振荡机理与稳定边界分析[J]. 电工技术学报, 2023, 38(8): 2148-2161. Wang Qing, Liu Zeng, Han Pengcheng, et al.Analysis of oscillation mechanism and stability boundary of droop-controlled parallel converters based on output impedances of individual converters in DC microgrids[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2148-2161. [6] 彭克, 陈佳佳, 徐丙垠, 等. 柔性直流配电系统稳定性及其控制关键问题[J]. 电力系统自动化, 2019, 43(23): 90-98, 115. Peng Ke, Chen Jiajia, Xu Bingyin, et al.Key issues of stability and control in flexible DC distribution system[J]. Automation of Electric Power Systems, 2019, 43(23): 90-98, 115. [7] 王力, 谭振杰, 曾祥君, 等. 基于改进等效电路模型的直流微电网大信号稳定性分析[J]. 电工技术学报, 2024, 39(5): 1284-1299. Wang Li, Tan Zhenjie,Zeng Xiangjun, et al.Large-signal stability analysis for DC microgrids based onthe improved equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1284-1299. [8] Liu Zhangjie, Ge Xin, Su Mei, et al.Complete large-signal stability analysis of DC distribution network via brayton-moser’s mixed potential theory[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 866-877. [9] Chang Fangyuan, Cui Xiaofan, Wang Mengqi, et al.Region of attraction estimation for DC microgrids with constant power loads using potential theory[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3793-3808. [10] 张泽华, 宋桂英, 张晓璐, 等. 考虑恒功率负载的直流微电网稳定性与鲁棒性控制策略[J]. 电工技术学报, 2023, 38(16): 4391-4405. Zhang Zehua, Song Guiying, Zhang Xiaolu, et al.Stability and robustness control strategy of DC microgrid considering constant power load[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4391-4405. [11] Kim H J, Kang S W, Seo G S, et al.Large-signal stability analysis of DC power system with shunt active damper[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6270-6280. [12] 张晓兵. PWM整流器级联系统大信号稳定性分析及改善方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhang Xiaobing.Research on large signal stability analysis and improvement method of PWM rectifier cascade system[D]. Harbin: Harbin Institute of Technology, 2018. [13] Ahmad S, Ali A.Active disturbance rejection control of DC-DC boost converter: a review with modifications for improved performance[J]. IET Power Electronics, 2019, 12(8): 2095-2107. [14] Gui Yonghao, Han Renke, M Guerrero J, et al. Large-signal stability improvement of DC-DC converters in DC microgrid[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2534-2544. [15] 聂金铜, 赵争鸣, 袁立强, 等. 级联恒功率负载情况下三相并网PWM整流器基于TS模糊模型的稳定性分析[J]. 电网技术, 2020, 44(5): 1931-1943. Nie Jintong, Zhao Zhengming, Yuan Liqiang, et al.Stability of three-phase grid-connected PWM rectifier cascaded with constant power loads based on TS fuzzy models[J]. Power System Technology, 2020, 44(5): 1931-1943. [16] 赵学深, 朱琳, 郭力, 等. 基于等值单机非线性模型的多换流器并联直流系统暂态稳定性分析及控制参数整定方法[J]. 中国电机工程学报, 2023, 43(4): 1389-1401. Zhao Xueshen, Zhu Lin, Guo Li, et al.Transient stability analysis and control parameters tuning method of multi-converters DC power system based on equivalent single-converter nonlinear model[J]. Proceedings of the CSEE, 2023, 43(4): 1389-1401. [17] Zhu Xiaorong, Meng Fanqi, Xie Zhiyun, et al.An inertia and damping control method of DC-DC converter in DC microgrids[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 799-807. [18] 孙东阳, 李爽, 王俊武, 等. 基于虚拟直流电机控制的船舶高频高峰值脉冲负载冲击平抑控制策略研究[J]. 电工技术学报, 2024, 39(20): 6328-6344. Sun Dongyang, Li Shuang, Wang Junwu, et al.Study on virtual DC generator-based ship high-frequency and high-peakpower pulsed loads impact damping control strategy[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6328-6344. [19] 孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17. Kong Xiangyu, Ma Yuying, Ai Qian, et al.Review on electricity consumption characteristic modeling and load forecasting for diverse users in new power system[J]. Automation of Electric Power Systems, 2023, 47(13): 2-17. [20] 尹英龙. 基于虚拟直流电机的DC/DC变换器稳定控制技术研究[D]. 西安: 陕西科技大学, 2021. Yin Yinglong.Research on stability control technology of DC/DC converter based on virtual DC machine[D]. Xi’an: Shaanxi University of Science & Technology, 2021. [21] 李鹏飞, 李霞林, 王成山, 等. 中低压柔性直流配电系统稳定性分析模型与机理研究综述[J]. 电力自动化设备, 2021, 41(5): 3-21. Li Pengfei, Li Xialin, Wang Chengshan, et al.Review of stability analysis model and mechanism research of medium- and low-voltage flexible DC distribution system[J]. Electric Power Automation Equipment, 2021, 41(5): 3-21. [22] 郑华俊. 向无源网络供电的柔性直流输电系统大信号稳定性研究[D]. 重庆: 重庆大学, 2020. Zheng Huajun.Study on large signal stability of VSC-HVDC system supplying passive networks[D]. Chongqing: Chongqing University, 2020. [23] 朱晓荣, 孟凡奇, 谢志云. 基于虚拟同步发电机的直流微网DC-DC变换器控制策略[J]. 电力系统自动化, 2019, 43(21): 132-140. Zhu Xiaorong, Meng Fanqi, Xie Zhiyun.Control strategy of DC-DC converter in DC microgrid based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2019, 43(21): 132-140. [24] 支娜. 直流微电网协调控制及其稳定性研究[D]. 西安: 西安理工大学, 2016. Zhi Na.Research on coordinated control and stability analysis of DC microgrid[D]. Xi’an: Xi’an University of Technology, 2016. [25] Zheng Huajun, Yuan Xufeng, Cai Jie, et al.Large-signal stability analysis of DC side of VSC-HVDC system based on estimation of domain of attraction[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3630-3641. [26] 李翼翔, 田震, 唐英杰, 等. 考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析[J]. 电力自动化设备, 2022, 42(8): 11-18. Li Yixiang, Tian Zhen, Tang Yingjie, et al.Small-signal stability analysis of island microgrid considering interaction between grid-forming converter and grid-following converter[J]. Electric Power Automation Equipment, 2022, 42(8): 11-18. [27] 孟建辉, 王毅, 石新春, 等. 基于虚拟同步发电机的分布式逆变电源控制策略及参数分析[J]. 电工技术学报, 2014, 29(12): 1-10. Meng Jianhui, Wang Yi, Shi Xinchun, et al.Control strategy and parameter analysis of distributed inverters based on VSG[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 1-10. [28] Jiang Jianbo, Liu Fei, Pan Shangzhi, et al.A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11342-11351. [29] 夏杨红, 韦巍. 电力电子化电力系统暂态稳定分析新框架: 基于耦合因子的非线性解耦方法[J]. 中国电机工程学报, 2020, 40(16): 5102-5112. Xia Yanghong, Wei Wei.New analysis framework for transient stability evaluation of power electronics dominated power system: coupling factors based nonlinear decoupling method[J]. Proceedings of the CSEE, 2020, 40(16): 5102-5112. [30] 赵书强, 王慧, 田娜, 等. 基于模型预测控制的直流微电网虚拟惯性优化方法[J]. 电工技术学报, 2023, 38(12): 3264-3276. Zhao Shuqiang, Wang Hui, Tian Na, et al.Model predictive control based DC microgrid virtual inertia optimal method[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3264-3276. |
|
|
|