[1] Yang S, Bryant A, Mawby P, et al.An industry based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
[2] 张军, 张犁, 成瑜. IGBT 模块寿命评估研究综述[J]. 电工技术学报, 2019, 34(10): 2069-2078.
Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2560-2575.
[3] 曾文彬, 宋梁, 张西应, 等. 基于Coffin-Manson模型功率半导体器件可靠性评估[J].电力电子技术, 2022, 56(7): 138-140.
Zeng Wenbin, Song Liang, Zhang Xiying, et al.Reliability evaluation for power semiconductor device using Coffin-Manson model[J]. Power Electronics, 2022, 56(7): 138-140.
[4] 赖伟, 陈民铀, 冉立, 等.老化实验条件下的IGBT寿命预测模型[J].电工技术学报, 2016, 31(24): 173-180.
Lai Wei, Chen Minyou, Ran Li, et al.IGBT lifetime model based on aging experiment[J].Transactions of China Electrotechnical Society, 2016, 31(24): 173-180.
[5] Ceccarelli L, Kotecha R M, Bahman A S, et al.Mission-profile-based lifetime prediction for a SiC MOSFET power module using a multi-step condition-mapping simulation strategy[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9698-9708.
[6] Shen Yanfeng, Liivik E, Blaabjerg F, et al.Reliability evaluation of an impedance-source PV microconverter[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018: 1104-1108.
[7] Fu S Y, Tseng Y C, Chiang K N.Study on data effect of using RNN model to predict reliability life of wafer level packaging[C]//2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, China, 2020: 200-203.
[8] Mei Wenjuan, Liu Zhen, Su Yuanzhang.MRPM: multistep robust prediction machine for degradation time series projection[C]//2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Virtual, Glasgow, UK, 2021: 1-7.
[9] Dusmez S, Duran H, Akin B.Remaining useful lifetime estimation for thermally stressed power MOSFETs based on on-State resistance variation[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2554-2563.
[10] Celaya J, Saxena A, Saha S, et al.Prognostics of power MOSFETs under thermal stress accelerated aging using data-driven and model-based methodologies[C]//Annual Conference of the Prognostics and Health Management Society, Montreal, QC, Canada, 2011: 443-452.
[11] Baharani M, Biglarbegian M, Parkhideh B, et al.Real-time deep learning at the edge for scalable reliability modeling of Si-MOSFET power electronics converters[J]. IEEE Internet of Things Journal, 2019, 6(5): 7375-7385.
[12] 李畸勇, 张伟斌, 赵新哲,等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报, 2021, 36(9): 1771-1781.
Li Jiyong, Zhang Weibin, Zhao Xinzhe, et al.Global maximum power point tracking for PV array based on support vector regression optimized by improved whale algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1771-1781.
[13] Zheng Shuai, Ristovski K, Farahat A, et al.Long short-term memory network for remaining useful life estimation[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 2017: 88-95.
[14] Ni Z, Lyu X, Yadav O P, et al.Overview of real-time lifetime prediction and extension for SiC power converters[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7765-7794.
[15] 唐圣学, 张继欣, 姚芳, 等. IGBT模块寿命预测方法研究综述[J]. 电源学报, 2023, 21(1): 177-194.
Tang Shengxue, Zhang Jixin, Yao Fang, et al.An overview of lifetime prediction methods for IGBT power module[J]. Journal of Power Supply, 2023, 21(1): 177-194.
[16] 石怀涛, 尚亚俊, 白晓天, 等. 基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究[J]. 振动与冲击, 2021, 40(18): 286-297.
Shi Huaitao, Shang Yajun, Bai Xiaotian, et al.Early fault prediction method combining SWDAE and LSTM for rolling bearings based on Bayesian optimization[J]. Journal of Vibration and Shock, 2021, 40(18): 286-297.
[17] 姚艳, 曹健. 一种成本有效的面向超参数优化的工作流执行优化方法[J]. 计算机集成制造系统, 2020, 26(6): 1628-1635.
Yao Yan, Cao Jian.Cost-effective workflow execution strategy for hyperparameter search[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1628-1635.
[18] 葛建文, 黄亦翔, 陶智宇, 等. 基于Transformer模型的IGBT剩余寿命预测[J]. 半导体技术, 2021, 46(4): 316-323.
Ge Jianwen, Huang Yixiang, Tao Zhiyu, et al.Residual useful life prediction of IGBTs based on transformer model[J]. Semiconductor Technology, 2021, 46(4): 316-323.
[19] 白梁军, 黄萌, 饶臻, 等. 基于GARCH模型的IGBT寿命预测[J]. 中国电机工程学报, 2020, 40(18): 5787-5796.
Bai Liangjun, Huang Meng, Rao Zhen, et al.Lifetime prediction of IGBT based on GARCH model[J]. Proceedings of the CSEE, 2020, 40(18): 5787-5796.
[20] 高伟, 张琼洁, 李长留, 等. 基于LSTM网络的牵引变流器IGBT故障预测方法研究[J]. 电子器件, 2020, 43(4): 804-808.
Gao Wei, Zhang Qiongjie, Li Changliu, et al.A fault prediction method of IGBT in traction converter based on LSTM[J]. Chinese Journal of Electron Devices, 2020, 43(4): 804-808.
[21] 王飞, 黄涛, 杨晔, 等. 基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究[J]. 计算机科学, 2022, 49(增刊1): 784-789.
Wang Fei, Huang Tao, Yang Ye, et al.Study on machine learning algorithms for life prediction of IGBT devices based on stacking multi-model fusion[J]. Computer Science, 2022, 49(S1): 784-789.
[22] Celaya J, Wysocki P, Goebel K. IGBT accelerated aging data set, NASA prognostics data repository[DB/OL]. NASA Ames Research Center, Moffett Field, CA, 2009, https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
[23] 石耀霖, 李林芳, 程术. 运用LSTM神经网络对川滇地区的地震中期预报——回溯性预测2008年汶川M_S8.0地震的探索[J]. 中国科学院大学学报, 2022, 39(1): 1-12.
Shi Yaolin, Li Linfang, Cheng Shu.Application of LSTM neural network for intermediate-term earthquake prediction: retrospective prediction of 2008 Wenchuan MS8. 0 Earthquake[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(1): 1-12.
[24] 罗仁泽,李阳阳.一种基于RUnet卷积神经网络的地震资料随机噪声压制方法[J].石油物探, 2020, 59(1): 51-59.
Luo Renze,Li Yangyang.Random seismic noise attenuation based on RUnet convolutional neural network[J]. Geophysical Prospecting for Petroleum, 2020, 59(1): 51-59.
[25] 于永进, 姜雅男, 李长云. 基于鲸鱼优化-长短期记忆网络模型的机-热老化绝缘纸剩余寿命预测方法[J]. 电工技术学报, 2022, 37(12): 3162-3171.
Yu Yongjin, Jiang Yanan, Li Changyun.Prediction method of insulation paper remaining life with mechanical-thermal synergy based on whale optimization algorithm-long-short term memory model[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3162-3171.
[26] 王琛, 王颖, 郑涛, 等. 基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799.
Wang Chen, Wang Ying, Zheng Tao, et al.Multi-energy load forecasting in integrated energy system based on ResNet-LSTM network and attention mechanism[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1789-1799.
[27] 葛磊蛟, 赵康, 孙永辉, 等. 基于孪生网络和长短时记忆网络结合的配电网短期负荷预测[J]. 电力系统自动化, 2021, 45(23): 41-50.
Ge Leijiao, Zhao Kang, Sun Yonghui, et al.Short-term load forecasting of distribution network based on combination of siamese network and long short-term memory network[J]. Automation of Electric Power Systems, 2021, 45(23): 41-50.
[28] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
Yang Jingxian, Zhang Shuai, Liu Jichun, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short-term memory with dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2021, 45(3): 174-182.
[29] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
Huang Kai, Ding Heng, Guo Yongfang, et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
[30] Tamssaouet F.Towards system-level prognostics: modeling, uncertainty propagation and system remaining useful life prediction[D]. Toulouse: Institut National Polytechnique de Toulouse, 2020.
[31] 代杰杰, 宋辉, 杨祎, 等. 基于栈式降噪自编码器的输变电设备状态数据清洗方法[J]. 电力系统自动化, 2017, 41(12): 224-230.
Dai Jiejie, Song Hui, Yang Yi, et al.Cleaning method for status data of power transmission and transformation equipment based on stacked denoising autoencoders[J]. Automation of Electric Power Systems, 2017, 41(12): 224-230.
[32] 史佳琪, 马丽雅, 李晨晨, 等.基于串行-并行集成学习的高峰负荷预测方法[J]. 中国电机工程学报, 2020, 40(14): 4463-4472, 4726.
Shi Jiaqi, Ma Liya, Li Chenchen, et al.Daily peak load forecasting based on sequential-parallel ensemble learning[J]. Proceedings of the CSEE, 2020, 40(14): 4463-4472, 4726.
[33] 姚艳,曹健. 一种成本有效的面向超参数优化的工作流执行优化方法[J]. 计算机集成制造系统, 2020, 26(6): 1628-1635.
Yao Yan, Cao Jian.Cost‐effective workflow execution strategy for hyperparameter search[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1628-1635.
[34] Nazari M, Sakhaei S M.Successive variational mode decomposition[J]. Signal Processing, 2020, 174: 107610.
[35] 张鑫. 基于信号处理的牵引逆变器系统故障诊断算法研究[D]. 成都: 西南交通大学, 2021.
[36] 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(1): 86-92.
Li Yaru, Zhang Yulai, Wang Jiachen.Survey on bayesian optimization methods for hyper-parameter tuning[J]. Computer Science, 2022, 49(1): 86-92.
[37] 黄梓欣, 林湘宁, 马啸, 等. 含风电继电保护应用中的电流互感器饱和电流重构方法[J]. 电工技术学报, 2022, 37(19): 4823-4834.
Huang Zixin, Lin Xiangning, Ma Xiao, et al.Reconstruction method of saturation current of current transformer in relay protection application related to wind power[J].Transactions of China Electrotechnical Society, 2022, 37(19): 4823-4834.
[38] 孟晓承, 韩学山, 许易经, 等. SF6高压断路器机械故障概率的非精确条件估计[J]. 电工技术学报, 2019, 34(4): 693-702.
Meng Xiaocheng, Han Xueshan, Xu Yijing, et al.Imprecise estimation for conditional mechanical outage probabilities of SF6 high voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 693-702.
[39] Wang Xiang, Wei Weiwei, Zhang Yanhui, et al.A data-driven lifetime prediction method for thermal stress fatigue failure of power MOSFETs[J]. Energy Reports, 2022, 8(15): 467-473.
[40] Su Xiaohong, Wang Shuai, Pecht M, et al.Prognostics of lithium-ion batteries based on different dimensional state equations in the particle filtering method[J]. Transactions of the Institute of Measurement and Control. 2017, 39(10): 1537-1546.
[41] 郭稳. 功率MOSFET剩余使用寿命预测方法及热疲劳建模研究[D]. 南昌: 华东交通大学, 2020.
[42] Chen W, Zhang L, Pattipati K, et al.Data-driven approach for fault prognosis of SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4048-4062. |