|
|
Partial Discharge Characteristics of Aeronautical Cables at Low Pressure |
Jiang Jun1, Li Zhi1, Zhang Bendong2, Li Wenyuan3, Zhang Chaohai1 |
1. Center for More-Electric-Aircraft Power System Nanjing University of Aeronautics and Astronautics Nanjing 211106 China; 2. State Grid Shandong Electric Power Company Lai Wu Power Supply Company Jinan 250000 China; 3. School of Electrical and Electronic Engineering The University of Manchester Manchester M60 1QD United Kingdom |
|
|
Abstract In order to achieve the electrification of aircraft, the risk of partial discharge (PD) of cable insulation in the electrical system of more-electric-aircraft is increasing with the constant increase of power supply and voltage level. The partial discharge characteristics of aeronautical cables at low pressure and typical frequency were investigated by setting three typical models: cable to ground metal plate discharge, cable to cable rack discharge and cable to cable discharge. The experimental results show that the partial discharge inception voltage (PDIV) of the three types of discharge models decreases with the decrease of pressure, and the PDIV of cable to cable discharge models is more than two times higher than that of other models when the pressure is above 50kPa. The increase of voltage frequency significantly increases the discharge repetition rate of models, and the effect is obvious for cable to cable rack discharge at 10kPa. In the same condition, the phase width and the strength of "polarity effect" of phase-resolved partial discharge (PRPD) spectrum for different discharge models varies. The characteristics are helpful to the identification of discharge model types, and can provide reference for the design and fault diagnosis of aeronautical cables.
|
Received: 02 August 2021
|
|
|
|
|
[1] Borghei M, Ghassemi M.Insulation materials and systems for more- and all-electric aircraft: a review identifying challenges and future research needs[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1930-1953. [2] 张卓然, 许彦武, 于立, 等. 多电飞机高压直流并联供电系统发展现状与关键技术[J]. 航空学报, 2021, 42(6): 12-25. Zhang Zhuoran, Xu Yanwu, Yu Li, et al.Parallel HVDC electric power system for more-electric-aircraft: state of the art and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 12-25. [3] Barzkar A, Ghassemi M.Electric power systems in more and all electric aircraft: a review[J]. IEEE Access, 2020, 8: 169314-169332. [4] Shahsavarian T, Wu Xin, Lents C, et al.Temperature-dependent partial discharge characteristics of high temperature materials at DC voltage for hybrid propulsion systems[J]. High Voltage, 2021, 6(4): 590-598. [5] 周利军, 仇祺沛, 成睿, 等. 高温高气压下XLPE电缆电树枝生长规律及局放特性[J]. 高电压技术, 2018, 44(5): 1421-1427. Zhou Lijun, Qiu Qipei, Cheng Rui, et al.Propagation and partial discharge characteristics of electrical trees in XLPE cable under high temperatures and high gas pressures[J]. High Voltage Engineering, 2018, 44(5): 1421-1427. [6] 赵一枫, 刘刚, 谢月, 等. 退役高压XLPE电缆绝缘空间电荷行为研究[J]. 电力工程技术, 2020, 39(3): 151-157, 172. Zhao Yifeng, Liu Gang, Xie Yue, et al.Space charge behavior of retired high-voltage XLPE cables[J]. Electric Power Engineering Technology, 2020, 39(3): 151-157, 172. [7] Diaw E H N, Roy S L, Teyssèdre G, et al. Current measurements in high performance polymers used in aeronautic cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(6): 2195-2202. [8] 李欢, 王永兴, 邹积岩, 等. 航空线缆绝缘的加速老化试验研究[J]. 电器与能效管理技术, 2017(7): 15-19. Li Huan, Wang Yongxing, Zou Jiyan, et al.Investigation on accelerated aging characteristics of aviation cable insulation[J]. Electrical & Energy Management Technology, 2017(7): 15-19. [9] Moffat B G, Abraham E, Desmulliez M P Y, et al. Failure mechanisms of legacy aircraft wiring and interconnects[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(3): 808-822. [10] Madonna V, Giangrande P, Zhao Weiduo, et al.Electrical machines for the more electric aircraft: partial discharges investigation[J]. IEEE Transactions on Industry Applications, 2021, 57(2): 1389-1398. [11] Lusuardi L, Rumi A, Cavallini A, et al.Partial discharge phenomena in electrical machines for the more electrical aircraft. part II: impact of reduced pressures and wide bandgap devices[J]. IEEE Access, 2021, 9: 27485-27495. [12] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [13] 陈钜栋, 江军, 杨小平, 等. 油浸式高压套管局部放电非接触式特高频检测[J]. 电力工程技术, 2021, 40(1): 147-154. Chen Judong, Jiang Jun, Yang Xiaoping, et al.Non-contact partial discharge detection of high voltage oil-impregnated-paper bushing based on UHF technology[J]. Electric Power Engineering Technology, 2021, 40(1): 147-154. [14] 杜浩, 关弘路, 蒋琛, 等. 交流电压下交联聚乙烯电缆典型缺陷局部放电特性研究[J]. 高压电器, 2020, 56(12): 164-170. Du Hao, Guan Honglu, Jiang Chen, et al.Investigation of partial discharge characteristics of typical defects in XLPE cable under AC voltages[J]. High Voltage Apparatus, 2020, 56(12): 164-170. [15] 江军, 张本栋, 王凯, 等. 面向多电飞机的脉冲波形下局部放电规律[J]. 航空学报, 2020, 41(9): 206-215. Jiang Jun, Zhang Bendong, Wang Kai, et al.Partial discharge rule of more-electric-aircraft with pulse voltage waveform[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 206-215. [16] 姚雨杭, 潘成, 唐炬, 等. 交直流复合电压下流动变压器油中金属微粒运动规律和局部放电特性研究[J]. 电工技术学报, 2021, 36(15): 3101-3112. Yao Yuhang, Pan Cheng, Tang Ju, et al.Motion behaviors and partial discharge characteristics of metallic particles in moving transformer oil under AC/DC composite voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3101-3112. [17] Montanari G C.Partial discharge detection in medium voltage and high voltage cables: maximum distance for detection, length of cable, and some answers[J]. IEEE Electrical Insulation Magazine, 2016, 32(5): 41-46. [18] Shahsavarian T, Li Chuanyang, Baferani M A, et al.High temperature insulation materials for DC cable insulation—part II: partial discharge behavior at elevated altitudes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 231-239. [19] Christou I, Nelms A, Cotton I, et al.Choice of optimal voltage for more electric aircraft wiring systems[J]. IET Electrical Systems in Transportation, 2011, 1(1): 24-30. [20] Driessen A B J M, van Duivenbode J, Wouters P A A F. Partial discharge detection for characterizing cable insulation under low and medium vacuum conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 306-315. [21] Alrumayan F, Cotton I, Nelms A.Partial discharge testing of aerospace electrical systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 848-863. [22] Christou I, Cotton I.Methods for partial discharge testing of aerospace cables[C]//2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 2010: 1-5. [23] Hähner T, Rybsky P, Cotton I, et al.A round-robin test study of partial discharge inception voltage in aeronautic cables[C]//2020 International Symposium on Electrical Insulating Materials (ISEIM), Tokyo, Japan, 2020: 185-189. [24] American Society for Testing and Materials. ASTM D3032-21. Standard test methods for hookup wire insulation[S]. West Conshohocken: ASTM International, 2021. [25] Niemeyer L.A generalized approach to partial discharge modeling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(4): 510-528. [26] 米彦, 桂路, 刘露露, 等. 环氧树脂针-板缺陷在指数衰减脉冲和正弦电压作用下的局部放电特性[J]. 电工技术学报, 2020, 35(2): 425-434. Mi Yan, Gui Lu, Liu Lulu, et al.Partial discharge characteristics of epoxy resin needle-plate defect under exponential decay pulse and sinusoidal voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 425-434. [27] Wang Xia, Shu Zihang, Duan Shenjie, et al.Study of space charge accumulation property in polyethylene under applied voltage of square wave[C]//2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 2019: 178-181. [28] 周力任, 吴广宁, 高波, 等. 聚酰亚胺薄膜中电荷输运机理和空间电荷特性[J]. 电工技术学报, 2009, 24(12): 6-11. Zhou Liren, Wu Guangning, Gao Bo, et al.Charge transport mechanism and space charge characteristic in polyimide film[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 6-11. [29] 罗杨, 吴广宁, 刘继午, 等. 局部放电作用对变频电机匝间纳米复合绝缘的损伤机理研究[J]. 电工技术学报, 2014, 29(6): 303-310. Luo Yang, Wu Guangning, Liu Jiwu, et al.Study on PD damage mechanism of nano-composite used as turn insulation in inverter-fed traction motors[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 303-310. |
|
|
|