|
|
Research on the Effect of Splitter Plate Material and Structure on Arc Extinguishing Performance with Coupling Magnetic Field |
Peng Shidong1, Li Jing1, Cao Yundong1, Liu Shuxin1, Yu Longbin2 |
1. Key Lab of Special Electric Machine and High Voltage Apparatus College of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. State Grid Liaoning Electric Power Research Institute Shenyang 110006 China |
|
|
Abstract The material and structure of splitter plates have significant influence on the arc extinguishing performance of circuit breaker. The magnetic field calculation model and arc magnetohydrodynamic (MHD) model were established in this paper under the action of permanent magnet and the two models are coupled. The influences of splitter plates material and splitter plates structure on arc dynamic characteristics under the action of permanent magnet were simulated and analyzed on the basis of the models with considering the influence of the polarity of the power source. The spatial distribution of magnetic field in arc chamber under the action of permanent magnet, temperature distribution and air flow distribution in arc chamber under the action of electromagnetic were obtained. The key parameters such as average temperature in arc chamber and arc duration time were extracted, and the effects of splitter plates material and splitter plates structure on arc characteristics were discussed. The results show that the iron splitter plates will cause magnetic short circuit phenomenon in arc chamber under the action of external magnetic field. Under the same simulation parameters, the arc duration time with iron splitter plates in arc chamber is the longest, and the moving contact as the anode is more conducive to arc root commutation so as to shorten arc duration. For the same interrupting current, the cooling effect of copper-insulated splitter plates are the most effective. Airflow field distribution can be distorted by the inclination angle of splitter plates, which affects the arc duration time.
|
Received: 31 December 2021
|
|
|
|
|
[1] 朱志豪, 赵芳帅, 袁端磊, 等. 城市轨道交通大容量直流快速断路器的研发[J]. 高电压技术, 2018, 44(2): 417-423. Zhu Zhihao, Zhao Fangshuai, Yuan Duanlei, et al.Research and development of high-power and high-speed DC circuit breaker for urban rail transit[J]. High Voltage Engineering, 2018, 44(2): 417-423. [2] Ren Zhigang, Ma Ruiguang, Sun Hao, et al.Experimental investigation of arc characteristics in medium-voltage DC circuit breaker[C]//2013 IEEE International Conference of IEEE Region 10 (TENCON 2103), Xi'an, China, 2013: 1-4. [3] 翟国富, 薄凯, 周学, 等. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 251-263. Zhai Guofu, Bo Kai, Zhou Xue, et al.Investigation on breaking arc in DC high-power relays: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 251-263. [4] Yang Fei, Wu Yi, Rong Mingzhe, et al.Low-voltage circuit breaker arcs—simulation and measurements[J]. Journal of Physics D: Applied Physics, 2013, 46(27): 273001. [5] 舒立春, 刘延庆, 蒋兴良, 等. 盘型悬式绝缘子串自然覆冰直流放电发展路径特点及影响因素分析[J]. 电工技术学报, 2021, 36(8): 1726-1733. Shu Lichun, Liu Yanqing, Jiang Xingliang, et al.Analysis on the DC discharge path of ice-covered disc type suspension insulators under natural conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1726-1733. [6] 程显, 徐鹏飞, 葛国伟, 等. 机械式真空直流断路器弧后电流测量研究[J]. 电工技术学报, 2021, 36(16): 3516-3524. Cheng Xian, Xu Pengfei, Ge Guowei, et al.Research on measurement of post-arc current of mechanical vacuum DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3516-3524. [7] 苏伟龙, 许志红. 高压直流继电器磁吹系统的建模与设计[J]. 电工技术学报, 2022, 37(6): 1583-1594. Su Weilong, Xu Zhihong.Modeling and design of magnetic blowing system for high voltage direct current relay[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1583-1594. [8] 钟昱铭, 熊兰, 杨子康, 等. 计及铜蒸气介质的小电流直流电弧仿真与实验[J]. 电工技术学报, 2020, 35(13): 2913-2921. Zhong Yuming, Xiong Lan, Yang Zikang, et al.Numerical simulation and experiment of small current DC arc considering copper vapor medium[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2913-2921. [9] 崔行磊, 周学, 张勇, 等. 基于彩色摄像和光谱分析联合测温方法的电弧温度场分布测量[J]. 电工技术学报, 2017, 32(15): 128-135. Cui Xinglei, Zhou Xue, Zhang Yong, et al.Measurement of static arc temperature distribution based on colorful photographing and spectroscopy analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 128-135. [10] 任帅, 宫鑫, 戴宏宇, 等. 百千安冲击电弧作用下纳米Al2O3掺杂对钨铜电极耐烧蚀性能的影响[J]. 电工技术学报, 2020, 35(9): 1880-1890. Ren Shuai, Gong Xin, Dai Hongyu, et al.Effect of nano-Al2O3 doping on erosion resistance of tungsten-copper electrode under 100kA pulsed arc[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1880-1890. [11] Biyik S, Aydin M.Investigation of the effect of different current loads on the arc-erosion performance of electrical contacts[J]. Acta Physica Polonica A, 2016, 129(4): 656-660. [12] Mutzke A, Ruther T, Kurrat M, et al.Modeling the arc splitting process in low-voltage arc chutes[C]// Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, Pittsburgh, PA, USA, 2007: 175-182. [13] Li Xingwen, Chen Degui, Wang Qian, et al.Simulation of the effects of several factors on arc plasma behavior in low voltage circuit breaker[J]. Plasma Science and Technology, 2005, 7(5): 3069-3072. [14] Wu Yi, Rong Mingzhe, Li Xingwen, et al.Numerical analysis of the effect of the chamber width and outlet area on the motion of an air arc plasma[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2831-2837. [15] 吴翊, 荣命哲, 杨茜, 等. 低压空气电弧动态特性仿真及分析[J]. 中国电机工程学报, 2005, 25(21): 143-148. Wu Yi, Rong Mingzhe, Yang Qian, et al.Simulation on dynamic characteristics of arc in low voltage circuit breaker modelling[J]. Proceedings of the CSEE, 2005, 25(21): 143-148. [16] Yin Jianning, Wang Qian, Li Xingwen, et al.Numerical study of influence of frequency and eddy currents on arc motion in low-voltage circuit breaker[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(8): 1373-1380. [17] Yin Jianning, Li Xingwen, Wang Qian.Numerical analysis of low voltage arc motion process at various frequencies[J]. Plasma Physics and Technology, 2017, 4(1): 48-51. [18] Yin Jianning, Wang Qian, Li Xingwen.Simulation analysis of arc evolution process in multiple parallel contact systems[J]. IEEE Transactions on Plasma Science, 2018, 46(8): 2788-2793. [19] Lindmayer M, Marzahn E, Mutzke A, et al.The process of arc splitting between metal plates in low voltage arc chutes[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(2): 310-317. [20] 张明, 王永兴, 田宇, 等. 气流场驱动下栅片中弧压提升特性的数值分析[J]. 电工技术学报, 2019, 34(13): 2752-2759. Zhang Ming, Wang Yongxing, Tian Yu, et al.Numerical analysis of arc voltage increasing characteristics in plate driven by airflow field[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2752-2759. [21] Kim K, Joo H W, Bae C Y, et al.3D simulation of air arc in the molded case circuit breaker[C]//2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), Kitakyushu, Japan, 2019: 239-242. [22] 李静, 刘凯, 曹云东, 等. 直流接触器分断过程中弧根演变及对重燃的影响分析[J]. 中国电机工程学报, 2019, 39(4): 1241-1251. Li Jing, Liu Kai, Cao Yundong, et al.Arc root development and its influence on arc reigniting during the breaking process of the DC contactor[J]. Proceedings of the CSEE, 2019, 39(4): 1241-1251. [23] Sun Hao, Rong Mingzhe, Chen Zhexin, et al.Investigation on the arc phenomenon of air DC circuit breaker[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2706-2707. [24] Hofmann H, Weindl C, Al-Amayreh M I, et al. Arc movement inside an AC/DC circuit breaker working with a novel method of arc guiding: part I—experiments, examination, and analysis[J]. IEEE Transactions on Plasma Science, 2012, 40(8): 2028-2034. [25] Ma Ruiguang, Rong Mingzhe, Yang Fei, et al.Investigation on arc behavior during arc motion in air DC circuit breaker[J]. IEEE Transactions on Plasma Science, 2013, 41(9): 2551-2560. [26] 吴祺嵘, 张认成, 涂然, 等. 直流故障电弧稳态传热特性仿真研究[J]. 电工技术学报, 2021, 36(13): 2697-2709. Wu Qirong, Zhang Rencheng, Tu Ran, et al.Simulation study on steady-state heat transfer characteristics of DC arc fault[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2697-2709. [27] Yang Fei, Rong Mingzhe, Wu Yi, et al.Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434011. [28] Yokomizu Y, Matsumura T, Henmi R, et al.Total voltage drops in electrode fall regions of SF6 argon and air arcs in current range from 10 to 20 000 A[J]. Journal of Physics D: Applied Physics, 1996, 29(5): 1260-1267. [29] Zhu S L, von Engel A. Fall regions and electrode effects in atmospheric arcs of vanishing length[J]. Journal of Physics D: Applied Physics, 1981, 14(12): 2225-2235. [30] 西安交通大学电气工程学院. 气体放电等离子体基础数据库[DB/OL]. http://plasma-data.net/index, 2022. [31] Liu Xiangjun, Huang Xin, Cao Qichun.Simulation and experimental analysis of DC arc characteristics in different gas conditions[J]. IEEE Transactions on Plasma Science, 2021, 49(3): 1062-1071. [32] Shkol'nik S M. Anode phenomena in arc discharges: a review[J]. Plasma Sources Science and Technology, 2011, 20(1): 013001. |
|
|
|