|
|
SiC MOSFET Gate Driver Design Based on Interference Dynamic Response Mechanism |
Shao Tiancong1, Zheng Trillion Q.1, Li Zhijun2, Li Hong1, Liu Jianqiang1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. Global Power Technology Co. Ltd Beijing 100192 China |
|
|
Abstract Currently, the gate driver design method of SiC MOSFET is mostly inherited from the Si MOSFET and IGBT. However, since SiC MOSFETs have higher switching speed than Si devices, it is also worth exploring the gate-source voltage interference caused by gate internal resistance, gate driver inductance and power circuit inductance. In this paper, the process of gate-source voltage interference is analyzed, and then the method of driver parameter per-united design based on interference dynamic response mechanism is summarized and extracted. This paper deduces the transfer functions of the power loop and the driver loop according to the equivalent circuit of the junction capacitance. Then, the interference dynamic response mechanism is revealed. Furthermore, a per-united parameter expression form is introduced to quantify the influence of gate driver parameters on the interference conduction path of gate-source voltage. The SiC MOSFET gate driver design principle is proposed based on the interference dynamic response mechanism. Finally, a double-pulse experimental platform was built to verify the rationality of the driver design principle.
|
Received: 01 March 2021
|
|
|
|
|
[1] 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-232. Zeng Zheng, Shao Weihua, Hu Borong, et al.Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE, 2017, 37(1): 221-232. [2] 李艳, 张雅静, 黄波, 等. Cascode型GaN HEMT输出伏安特性及其在单相逆变器中的应用研究[J]. 电工技术学报, 2015, 30(14): 295-303. Li Yan, Zhang Yajing, Huang Bo, et al.Research on output volt-ampere characteristics of Cascode GaN HEMT and its application in single-phase inverter[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 295-303. [3] 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161. Qian Zhaoming, Zhang Junming, Sheng Kuang.Status and development of power semiconductor devices and its applications[J]. Proceedings of the CSEE, 2014, 34(29): 5149-5161. [4] 王旭东, 朱义诚, 赵争鸣, 等. 驱动回路参数对碳化硅MOSFET开关瞬态过程的影响[J]. 电工技术学报, 2017, 32(13): 23-30. Wang Xudong, Zhu Yicheng, Zhao Zhengming, et al.Impact of gate-loop parameters on the switching behavior of SiC MOSFETs[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 23-30. [5] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752. [6] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 71-84. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(4): 71-84. [7] Chen Jian, Du Xiong, Luo Quanming, et al.A review of switching oscillations of wide bandgap semi-conductor devices[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13182-13199. [8] Zhang Boyi, Wang Shuo.A survey of EMI research in power electronics systems with wide-bandgap semi-conductor devices[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 626-643. [9] Xue Peng, Luca Maresca, Michele Riccio, et al.Analysis on the self-sustained oscillation of SiC MOSFET body diode[J]. IEEE Transactions on Elec-tron Devices, 2019, 66(10): 4287-4295. [10] 蒋烨, 赵争鸣, 施博辰, 等. 功率开关器件多时间尺度瞬态模型(II)——应用分析与模型互联[J]. 电工技术学报, 2017, 32(12): 25-32. Jiang Ye, Zhao Zhengming, Shi Bochen, et al.Multi-time scale transient models for power semiconductor devices (part II: applications analysis and model connection)[J]. Transactions of China Electrotech-nical Society, 2017, 32(12): 25-32. [11] 施博辰, 赵争鸣, 蒋烨, 等. 功率开关器件多时间尺度瞬态模型(I)——开关特性与瞬态建模[J]. 电工技术学报, 2017, 32(12): 16-24. Shi Bochen, Zhao Zhengming, Jiang Ye, et al.Multi-time scale transient models for power semiconductor devices (part I: switching characteristics and transient modeling)[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 16-24. [12] 何杰, 刘钰山, 毕大强, 等. 电压探头对宽禁带器件高频暂态电压精确测量的影响[J]. 电工技术学报, 2021, 36(2): 362-372. He Jie, Liu Yushan, Bi Daqiang, et al.Impacts of voltage probes for accurate measurement of high-frequency transient voltage of wide-bandgap devices[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 362-372. [13] 巴腾飞, 李艳, 梁美. 寄生参数对SiC MOSFET栅源极电压影响的研究[J]. 电工技术学报, 2016, 31(13): 64-73. Ba Tengfei, Li Yan, Liang Mei.The effect of parasitic parameters on gate-source voltage of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 64-73. [14] Zhang Zheyu, Guo Ben, Wang Fei Fred, et al.Methodology for wide band-gap device dynamic characterization[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9307-9318. [15] Wang Fred, Zhang Zheyu.Overview of silicon carbide technology: device, converter, system, and application[J]. CPSS Transactions on Power Electro-nics and Applications, 2016, 1(1): 13-32. [16] 段卓琳, 张栋, 范涛. SiC电机驱动系统传导电磁干扰建模及预测[J]. 电工技术学报, 2020, 35(22): 4726-4738. Duan Zhuolin, Zhang Dong, Fan Tao.Modeling and prediction of electromagnetic interference in SiC motor drive systems[J]. Transactions of China Electro-technical Society, 2020, 35(22): 4726-4738. [17] Klaus Sobe, Thomas Basler, Blaz Klobucar.Characterization of the parasitic turn-on behavior of discrete CoolSiCTM MOSFETs[C]//International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2019), Nuremberg, Germany, 2019: 7-9. [18] Zhang Zheyu, Guo Ben, Wang Fei.Evaluation of switching loss contributed by parasitic ringing for fast switching wide band-gap devices[J]. IEEE Transa-ctions on Power Electronics, 2019, 34(9): 9082-9094. [19] Li Ruqi, Zhu Qiuhua, Xie Manjing.A new analytical model for predicting dv/dt-induced low-side MOSFET false turn-on in synchronous Buck converters[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5500-5512. [20] Thomas Aichinger, Gerald Rescher, Gregor Pobegen.Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs[J]. Microelectronics Reliability, 2018, 80: 68-78. [21] Dethard Peters, Thomas Aichinger, Thomas Basler, et al.Investigation of threshold voltage stability of SiC MOSFETs[C]//2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, USA, 2018: 13-17. [22] Infineon Technologies AN-2018-09. Guidelines for CoolSiC™ MOSFET gate drive voltage window[EB/OL]. Available online at https://www.infineon.com (accessed on 1 September, 2020). [23] 李晓玲, 曾正, 陈昊, 等. SiC、Si、混合功率模块封装对比评估与失效分析[J]. 中国电机工程学报, 2018, 38(16): 4823-4835. Li Xiaoling, Zeng Zheng, Chen Hao, et al.Com-parative package evaluation and failure mode analysis of SiC, Si, and hybrid power modules[J]. Proceedings of the CSEE, 2018, 38(16): 4823-4835. [24] Zhang Zheyu, Zhang Weimin, Wang Fred, et al.Analysis of the switching speed limitation of wide band-gap devices in a phase-leg configuration[C]//2012 IEEE Energy Conversion Congress and Expo-sition (ECCE), Raleigh, USA, 2012: 15-20. [25] Ji Shiqi, Zheng Sheng, Wang Fei, et al.Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10kV SiC MOSFET[J]. IEEE Transactions on Power Elec-tronics, 2018, 33(5): 4317-4327. [26] Xie Ruiliang, Wang Hanxing, Tang Gaofei, et al.An analytical model for false turn-on evaluation of high-voltage enhancement-mode GaN transistor in bridge-leg configuration[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6416-6433. [27] Zhu Tianhua, Zhuo Fang, Zhao Fangzhou, et al.Quantitative model-based false turn-on evaluation and suppression for cascode GaN devices in half-bridge applications[J]. IEEE Transactions on Power Electro-nics, 2019, 34(10): 10166-10179. [28] 鄢景华. 自动控制原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006. |
|
|
|