|
|
Design and Implementation of an Experimental Platform for Dynamic Characteristics of Press-Pack IGBT Chip |
Peng Cheng, Li Xuebao, Zhang Guanrou, Zhao Zhibin, Cui Xiang |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract The press-pack IGBT chip is subjected to the comprehensive action of electro- thermo-mechanical under normal operating conditions. The study of the dynamic characteristics of IGBT chip under the influence of electro-thermo-mechanical is of great significance for guiding the modeling of IGBT chips and the design of large-scale IGBT parallel packaging. In order to obtain the dynamic characteristics of the press-pack IGBT chip under the comprehensive influence of electro- thermo-mechanical, in this paper, an experimental platform with a flexible electro-thermo-mechanical adjustment for the dynamic characteristics of the press-pack IGBT chip is developed, combined with the principle of the double pulse test circuit. Through the finite element simulation of the key problems of the dynamic characteristic experimental platform, the optimal design of parasitic inductance, IGBT chip surface pressure distribution and mechanical fixture temperature distribution is realized. On this basis, an experimental platform for dynamic characteristics of press-pack IGBT chip is established. Through comprehensive testing of the dynamic characteristic experimental platform, it is shown that the experimental platform has the characteristics of small parasitic inductance, balanced pressure distribution on the IGBT chip surface, and reasonable temperature distribution of each component of the mechanical fixture, which can meet the requirements of the dynamic characteristic test of the press-pack IGBT chip under comprehensive electro-thermo-mechanical influence.
|
Received: 01 November 2020
|
|
|
|
|
[1] Baliga B J, Adler M S, Gray P V, et al.The insulated gate rectifier (IGR): a new power switching device[C]// International Electron Devices Meeting, San Francisco, CA, USA, 1982: 264-267. [2] Iwamuro N, Laska T.IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752. [3] Shigekane H, Kirihata H, Uchida Y.Developments in modern high power semiconductor devices[C]//The 5th International Symposium on Power Semi- conductor Devices and ICS, Monterey, 1993: 16-21. [4] Kirihata H, Takahashi Y, Wakimoto H, et al.Investigation of flat-pack IGBT reliability[C]//1998 IEEE Industry Applications Conference, St.louis, 1998: 1016-1021. [5] Wakeman F, Lockwood G, Davies M, et al.Pressure contact IGBT, the ideal switch for high power appli- cations[C]//IEEE Industry Applications Conference, Phoenix, 1999: 700-707. [6] 刘国友, 窦泽春, 罗海辉, 等. 高功率密度3600A/ 4500V压接型IGBT研制[J]. 中国电机工程学报, 2018, 38(16): 4855-4862. Liu Guoyou, Dou Zechun, Luo Haihui, et al.Development of high power density 3600A/4500V press-pack IGBT[J]. Proceedings of the CSEE, 2018, 38(16): 4855-4862. [7] Wu Rui, Smirnova L, Wang Huai, et al.Com- prehensive investigation on current imbalance among parallel chips inside MW-scale IGBT power modules[C]//2015 9th International Conference on Power Electronics and ECCE Asia, Seoul, 2015: 850-856. [8] 黄先进, 凌超, 孙湖, 等. 多芯并联封装IGBT缺陷与失效先导判据[J]. 电工技术学报, 2019, 34(增刊2): 518-527. Huang Xianjin, Ling Chao, Sun Hu, et al.The leading criterion for defects and failures in multi-chip parallel package IGBTs[J]. Transactions of China Electro- technical Society, 2019, 34(S2): 518-527. [9] Li Helong, Zhou Wei, Wang Xiongfei, et al.Influence of paralleling dies and paralleling half-bridges on transient current distribution in multichip power modules[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6483-6487. [10] Gu Miaosong, Cui Xiang, Tang Xinling, et al.An electro-thermo-mechanical model basing on experi- mental results for press-pack IGBT including mos side two-dimensional effects[C]//2019 IEEE Applied Power Electronics Conference and Exposition, Anaheim, 2019: 502-507. [11] 张一鸣, 邓二平, 赵志斌, 等. 压接型IGBT器件封装内部多物理场耦合问题研究概述[J]. 中国电机工程学报, 2019, 39(21): 6351-6365. Zhang Yiming, Deng Erping, Zhao Zhibin, et al.A review of the multiphysics coupling problem in press pack IGBT[J]. Proceedings of the CSEE, 2019, 39(21): 6351-6365. [12] Lai Wei, Li Hui, Chen Minyou, et al.Investigation on the effects of unbalanced clamping force on multi-chip press pack IGBT modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electro- nics, 2019, 7(4): 2314-2322. [13] 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. Jia Yingjie,Xiao Fei, Luo Yifei, et al.Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. [14] Luo Yifei, Xiao Fei, Liu Binli, et al.A physics-based transient electrothermal model of high-voltage press-pack IGBTs under HVDC interruption[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5660-5669. [15] Belmehdi Y, Azzopardi S, Woirgard E, et al.A correlation between thermo-mechanical finite elements tool with electro-thermal finite elements tool: towards an electro-mechanical finite elements modeling for IGBT used in power assemblies[C]// 11th International Thermal, Mechanical & Multi- Physics Simulation and Experiments in Micro- electronics and Microsystems, Bordeaux, 2010: 1-5. [16] 刘盛福, 常垚, 李武华, 等. 压接式IGBT模块的动态特性测试平台设计及杂散参数提取[J]. 电工技术学报, 2017, 32(22): 50-57. Liu Shengfu, Chang Yao, Li Wuhua, et al.Dynamic switching characteristics test platform design and parasitic parameter extraction of press-pack IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 50-57. [17] 邓真宇, 陈民铀, 赖伟, 等. 多芯片并联压接式IGBT热-力不均对电流分布的影响分析及建模[J]. 中国电机工程学报, 2020, 40(23): 7699-7710. Deng Zhenyu, Chen Minyou, Lai Wei, et al.Analysis and modeling of the influence of thermal-force unevenness of multi-chip parallel press-pack IGBT devices on current distribution[J]. Proceedings of the CSEE, 2020, 40(23): 7699-7710. [18] IEC-60747-9 Semiconductor devices-discrete devices,Part 9: insulated-gate bipolar transistors (IGBTs)[S]. British Standard, 2007. [19] Tinschert L, Ardal A R, Poller T, et al.Possible failure modes in press-pack IGBTs[J]. Micro- electronics Reliability, 2015, 55(6): 903-911. [20] 周静, 康升扬, 李辉, 等. 内部压力不均对压接式IGBT器件电热特性的影响分析[J]. 电工技术学报, 2019, 34(16): 3408-3415. Zhou Jing, Kang Shengyang, Li Hui, et al.Simulation of influence of unbalanced clamping force on electro- thermal characteristics of press-pack IGBT devices[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3408-3415. [21] 唐新灵, 张璧君, 张语, 等. IGBT动态测试平台杂散电感提取方法[J]. 电网技术, 2020, 44(4): 1267-1275. Tang Xinling, Zhang Bijun, Zhang Yu, et al.Stray inductance extraction method of IGBT dynamic test platform[J]. Power System Technology, 2020, 44(4): 1267-1275. [22] IXYS corporation press-pack IGBT's devices, assemblies & supporting products/New-DC link capacitors[Z]. IUK-TSM-2015-003 Issue 4[2016-05-23]. [23] Infineon corporation technical information, FF400R12KT3[Z]. Datasheet.[2013-10-03]. |
|
|
|