|
|
Discharge Characteristics of 252kV Gas Insulated Transmission Line under Switching Impulse Voltage in C4F7N/CO2 Mixtures |
Zheng Zhongbo1, Chen Nan2, Li Zhichuang1, Li Qiang2, Ding Weidong1 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Xi’an High Apparatus Research Institute Co. Ltd Xi’an 710077 China |
|
|
Abstract C4F7N/CO2 mixed gas has been widely studied as an environmentally friendly insulating gas that is expected to replace SF6 in high-voltage gas insulated transmission line (GIL). In high-voltage power systems, the dielectric characteristics of the medium under switching impulse have become an important factor. However, there are few studies on gap breakdown and flashover characteristics of C4F7N/CO2 mixtures under switching impulse voltage. This paper studies the gap breakdown and flashover characteristics of 252kV GIL in C4F7N/CO2 mixtures with C4F7N content of 5%, 9%, and 13%, and compares them with the experimental results in 0.5MPa SF6. The results show that the discharge voltage increases with the increase of the gas pressure and the content of C4F7N. There are two forms of discharge. One is gap-surface flashover and the other is gap breakdown. The electrical insulation strength under 0.5MPa 13% C4F7N/87% CO2 and 0.6MPa 9% C4F7N/91% CO2 mixtures reaches over 87% of the electrical insulation strength under SF6 at 0.5MPa, and the electrical insulation strength under 0.7MPa 9% C4F7N/91% CO2 exceeds the insulation strength of SF6 at 0.5MPa.
|
Received: 15 April 2020
|
|
|
|
|
[1] 肖登明, 阎究敦. 气体绝缘输电线路(GIL)的应用及发展[J]. 高电压技术, 2017, 43(3): 17-25. Xiao Dengming, Yan Jiudun.Application and deve- lopment of gas insulated transmission line[J]. High Voltage Engineering, 2017, 43(3): 17-25. [2] Kieffel Y, Bertloot T, Souchal S, et al.Characteristics of g3-an alternative to SF6[C]//International Confer- ence on Dielectrics, Montpellier, France, 2016: 91-97. [3] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//Electrical Insulation Conference, Seattle, WA, 2015: 379-383. [4] 3M™ Novec™4710 Insulating Gas[J]. https://multimedia. 3m.com/mws/media/1132124O/3m-novec-4710-insul-ating-gas.pdf. [5] 赵明月, 韩冬, 周朕蕊, 等. 活性氧化铝和分子筛对C3F7CN/CO2及其过热分解产物的吸附特性[J]. 电工技术学报, 2020, 35(1): 88-96. Zhao Mingyue, Han Dong, Zhou Zhenrui, et al.Adsorption characteristics of activated alumina and molecular sieves for C3F7CN/CO2 and its decom- position by-products of overheating fault[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(1): 88-96. [6] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power & Energy Magazine, 2016, 14(2): 32-39. [7] 袁瑞君, 李涵, 郑哲宇, 等. 气体绝缘输电线路用C3F7CN/CO2混合气体与环氧树脂相容性试验[J]. 电工技术学报, 2020, 35(1): 70-79. Yuan Ruijun, Li Han, Zheng Zheyu, et al.Experiment on the compatibility between C3F7CN/CO2 gas mixture and epoxy resin used in gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 70-79. [8] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/ CO2 gas mixture as an eco-friendly alternative candidate to SF6 in high voltage insulation systems[C]// Conference on Electrical Insulation and Dielectric Phenomena, Toronto, Canada, 2016: 384-387. [9] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/ CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 23(5): 2587-2593. [10] 李志闯, 丁卫东, 高克利, 等. C4F7N/CO2混合气体中环氧绝缘子雷电冲击沿面绝缘特性[J]. 高电压技术, 2019, 45(4): 1071-1077. Li Zhichuang, Ding Weidong, Gao Keli, et al.Surface flashover characteristics of epoxy insulator in C4F7N/ CO2 mixtures under lightening impulse voltage[J]. High Voltage Engineering, 2019, 45(4): 1071-1077. [11] Li Zhichuang, Ding Weidong, Liu Yishu, et al.Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures in a uniform field under AC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1065-1072. [12] 李志闯, 郑忠波, 刘一树, 等. C4F7N/CO2混合气体中252kV盆式绝缘子工频沿面闪络特性[J]. 电工技术学报, 2020, 35(1): 75-82. Li Zhichuang, Zheng Zhongbo, Liu Yishu, et al.Surface flashover characteristics of the 252kV conical insulator in C4F7N/CO2 gas mixtures under AC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 75-82. [13] GB 311.1—2012 绝缘配合第1部分: 定义、原则和规则B 311.1—2012 绝缘配合第1部分: 定义、原则和规则[S]. 2012. [14] GBT 50064—2014 交流电气装置的过电压保护和绝缘配合设计规范[S]. 2014. [15] 李汉明, 朱同春. 最大似然法对冲击试验的应用[J]. 高电压技术, 1986, 12(1): 71-76. Li Hanming, Zhu Tongchun.Method of maximum likelihood applied to impulse test[J]. High Voltage Engineering, 1986, 12(1): 71-76. [16] 杨丞棠, 黄镜明. 冲击电压试验数据的极大似然估计法处理[J]. 高压电器, 1983(2): 11-17. Yang Chengtang, Huang Jingming.Method of maxi- mum likelihood for impulse voltage test data[J]. High Voltage Apparatus, 1983(2): 11-17. [17] 严璋, 朱德恒. 高电压绝缘技术[M]. 北京: 中国电力出版社, 2015. [18] Nechmi H E, Beroual A, Girodet A, et al.Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 886-892. |
|
|
|