|
|
Regulation of DC Electric Field Distribution within Insulation Via Positive Temperature Coefficient Material |
Zhou Wenjun1, Teng Chenyuan1,2, Zhou Yuanxiang1,2,3, Zhang Ling2, Zhang Yunxiao2 |
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China; 3. The Wind Solar Storage Division of State Key Laboratory of Power System and Generation Equipment School of Electrical Engineering Xinjiang University Urumqi 830047 China |
|
|
Abstract Negative temperature coefficient (NTC) electrical resistivity of insulating materials causes the distortion of DC electric field, increasing the design difficulty of HVDC equipment. The ceramic (0~35%) with positive temperature coefficient (PTC) electrical resistivity was doped into epoxy resin to weaken its temperature dependence of electrical resistivity (0~35%). Thermal conductivity, electrical resistivity-temperature characteristics and DC breakdown strength were tested. The electric field and temperature distribution under temperature gradient were simulated. The higher doping of PTC filler has a better electric field distribution. As for epoxy composite with 20% filler, the thermal conductivity increases by 66% and the radial temperature gradient decreases by 55%; the NTC effect weakens and the activation energy decreases by 35%; the maximum distortion of electric field decreases by 58%, while the DC breakdown strength only decreases by 16%. The PTC effect of fillers mitigating the decline of electrical resistivity with temperature coupled with decreased hot-spot temperature suppresses the distortion of electric field. The optimization of electric field distribution within insulation via PTC materials/epoxy composites has potential to be used in HVDC electrical equipment.
|
Received: 17 April 2020
|
|
|
|
|
[1] 贾科, 赵其娟, 冯涛, 等. 柔性直流配电系统高频突变量距离保护[J]. 电工技术学报, 2020, 35(2): 383-394. Jia Ke, Zhao Qijuan, Feng Tao, et al.High-frequency fault component distance protection for flexible DC distribution system[J]. Transactions of China Electro- technical Society, 2020, 35(2): 383-394. [2] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.Analysis on research status of parallel inverters control technologies for AC/DC distribution net- work[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4226-4241. [3] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(22): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part I: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 4649-4662. [4] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro- technical Society, 2019, 34(1): 179-191. [5] El-Refaie A M. Role of advanced materials in elec- trical machines[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 124-132. [6] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [7] 周远翔, 王宁华, 王云杉, 等. 固体电介质空间电荷研究进展[J]. 电工技术学报, 2008, 23(9): 16-25. Zhou Yuanxiang, Wang Ninghua, Wang Yunshan, et al.Review of research on space charge in solid dielectrics[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 16-25. [8] 李进, 张程, 杜伯学, 等. 直流GIL用非线性电导环氧绝缘子电场仿真[J]. 高电压技术, 2019, 45(4): 1056-1063. Li Jin, Zhang Cheng, Du Boxue, et al.Electrical field simulation of epoxy spacer with nonlinear condu- ctivity for DC GIL[J]. High Voltage Engineering, 2019, 45(4): 1056-1063. [9] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ: 电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [10] 周远翔, 滕陈源, 张灵, 等. 一种绝缘材料温阻特性的调控方法[P]. CN201910138647.3.2019-06-04. [11] Huybrechts B, Ishizaki K, Takata M.The positive temperature coefficient of resistivity in barium titanate[J]. Journal of Materials Science, 1995, 30: 2463-2474. [12] Teng Chenyuan, Zhou Yuanxiang, Li Shaohua, et al.Regulation of temperature resistivity characteristics of insulating epoxy composite by incorporating positive temperature coefficient material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 512-520. [13] Zhang Siyu, Zhang Hongliang, Feng Hua, et al.Relaxation processes and conduction mechanism of epoxy resin filled with graphene oxide[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 519-527. [14] Wang Qingyu, Yang Xi, Tian Huidong, et al.A novel dissipating heat structure of converter transformer RIP bushings based on 3-D electromagnetic-fluid- thermal analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1938-1946. [15] Wang Qingyu, Liao Jintao, Tian Huidong, et al.Regularity analysis of the temperature distribution of epoxy impregnated paper converter transformer bushings[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3254-3264. [16] Hjerrild J, Boggs S, Holboll J T, et al.DC-field in solid dielectric cables under transient thermal condi- tions[C]//IEEE International Conference on Solid Dielectrics, Eindhoven, Netherlands, 2001: 58-61. [17] Heywang W.Resistivity annmaly in doped barium titanate[J]. Journal of the American Ceramic Society, 1964, 47(10): 484-490. [18] 雷清泉, 刘关宇. 如何理解工程电介质中极化与电导两个基本物理过程及其测量的科学原理与方法[J]. 中国电机工程学报, 2018, 38(23): 6769-6789. Lei Qingquan, Liu Guanyu.How to understand the two basic physical processes of polarization and conductance in engineering dielectrics and scientific principles and methods of measurement[J]. Pro- ceedings of the CSEE, 2018, 38(23): 6769-6789. [19] Teng Chenyuan, Zhou Wenjun, Zhou Yuanxiang, et al.Improvement of the electrical resistivity of epoxy resin at elevated temperature by adding a positive temperature coefficient BaTiO3-based compound[J]. Plasma Science and Technology, 2020, 22: 044003. [20] Kwan C K.Dielectric phenomena in solids[M]. London: Elsevier Academic Press, 2004. [21] 滕陈源, 周远翔, 张灵, 等. 晶型对等规聚丙烯电导电流和空间电荷特性的影响[J]. 高电压技术, 2018, 44(8): 2679-2686. Teng Chenyuan, Zhou Yuanxiang, Zhang Ling, et al.Influence of crystalline phase on conduction current and space charge in isotactic polypropylene[J]. High Voltage Engineering, 2018, 44(8): 2679-2686. [22] Mazzanti G, Marzinotto M.Extruded cables for high voltage direct current transmission[M]. New Jersey: IEEE Press, 2013. [23] Huang Xingyi, Xie Liyuan, Yang Ke, et al.Role of interface in highly filled epoxy/BaTiO3 nanocom- posites. part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 21(2): 467-479. [24] 严胜, 罗湘, 贺之渊. 直流电网核心装备及关键技术展望[J]. 电力系统自动化, 2019, 43(3): 205-216. Yan Sheng, Luo Xiang, He Zhiyuan.Prospect of core equipment and key technology for DC power grid[J]. Automation of Electric Power Systems, 2019, 43(3): 205-216. [25] Huang Xingyi, Jiang Pingkai, Tanaka T.A review of dielectric polymer composites with high thermal con- ductivity[J]. IEEE Electrical Insulation Magazine, 2017, 27(4): 8-16. [26] Yao Tong, Chen Ke, Shao Tao, et al.Nano-BN encapsulated micro-AlN as fillers for epoxy com- posites with high thermal conductivity and sufficient dielectric breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 528-534. |
|
|
|