|
|
Influence Factors of Three-Dimensional Icing Characteristics on Insulators |
Gao Jin1, Guo Sihua1, Han Xingbo2, Jiang Xingliang3, Zhang Qi1 |
1. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute Chongqing 401123 China; 2. School of Mechatronics and Vehicle Engineering Chongqing Jiaotong University Chongqing 400074 China; 3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Icing can greatly degrade the insulation performance of insulators and seriously threaten the stable operation of transmission lines. Studying the characteristics of insulator icing and establishing a numerical model is the basis for solving the problem of insulator ice flashover. In order to study the development rule and influence factors of insulator icing under natural conditions, this paper analyzes the processes of water droplets collision, freezing and water film flowing on insulator surface. The differences of different insulator icing types are analyzed, and a three-dimensional insulator icing calculation model is established based on the theory of hydrodynamics and thermodynamics. Based on the model, the insulator LXY-120 is taken as an example to simulate the icing process under different environmental conditions. Moreover, the related icing tests of two different kinds of insulators are carried out in Xuefeng mountain. The measured insulator icing weight and the maximum icing thickness are compared with the simulation results. The results show that under different environmental conditions, the insulator icing type, the development process, the icing area, and the rate are different. In addition, the insulator structure will affect the icing rate. With a smaller diameter, a thinner shed and a multi-shed structure, the composite insulator FXBW-220 has the greater icing rate than that of the glass insulator LXY-300, and the ice can quickly connect the sheds of composite insulator under natural environment.
|
Received: 21 May 2020
|
|
|
|
|
[1] He Qing, Zhang Jian, Deng Mengyan, et al.Rime icing on bundled conductors[J]. Cold Regions Science and Technology, 2019, 158: 230-236. [2] Zhang Jian, He Qing, Makkonen Lasse.A novel water droplet size parameter for calculation of icing on power lines[J]. Cold Regions Science and Technology, 2018, 149: 65-70. [3] Zhang Jian, Makkonen Lasse, He Qing.A 2D numeri- cal study on the effect of conductor shape on icing collision efficiency[J]. Cold Regions Science and Technology, 2017, 143: 52-58. [4] Jones Kathleenf.A simple model for freezing rain ice loads[J]. Atmospheric Research, 1998, 46(1-2): 87-97. [5] Jiang Xingliang, Xiang Ze, Zhang Zhijin, et al.Comparison on AC icing flashover performance of porcelain, glass, and composite insulators[J]. Cold Regions Science and Technology, 2014, 100: 1-7. [6] Jiang Xingliang, Dong Bingbing, Zhang Zhijin, et al.Effect of shed configuration on DC flashover perfor- mance of ice-covered 110kV composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 699-705. [7] Kawai M. AC flashover tests at project UHV on iced- coated insulators[J]. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(8): 1800-1804. [8] Fikke Sm, Hanssen Je, Rolfseng L.Long range transported pollutants and conductivity of atmo- spheric ice on insulators[J]. IEEE Transactions on Power Delivery, 1993, 8(3): 1311-1321. [9] 蒋兴良, 任晓东, 韩兴波, 等. 不同布置方式对交流绝缘子串人工污秽闪络特性的影响[J]. 电工技术学报, 2020, 35(4): 896-905. Jiang Xingliang, Ren Xiaodong, Han Xingbo, et al.Influence of different layout methods on artificial pollution flashover characteristics of AC insulator strings[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 896-905. [10] Farzaneh M, Kiernicki J.Flashover performance of IEEE standard insulators under ice conditions[J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1602-1613. [11] Matsuda H, Komuro H, Takasu K.Withstand voltage characteristics of insulator string covered with snow or ice[J]. IEEE Transactions on Power Delivery, 1991, 6(3): 1243-1250. [12] Fujimura Tetsuo, Naito Katsuhiko, Hasegawa Yoshio, et al. Performance of insulators covered with snow or ice[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(5): 1621-1631. [13] Yang Qing, Sima Wenxia, Sun Caixin, et al.A new AC flashover model of ice-covered HV insulators based on numerical electric field analysis[J]. IET Generation Transmission & Distribution, 2008, 2(4): 600-609. [14] Farzaneh M, Fofana I, Tavakoli C, et al.Dynamic modeling of DC arc discharge on ice surfaces[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(3): 463-474. [15] Farzaneh M, Zhang Jianhui, Chen Xing.Modeling of the AC arc discharge on ice surfaces[J]. IEEE Transa- ctions on Power Delivery, 1997, 12(1): 325-338. [16] 张志劲, 张翼, 蒋兴良, 等. 自然环境不同年限复合绝缘子硅橡胶材料老化特性表征方法研究[J]. 电工技术学报, 2020, 35(6): 1368-1376. Zhang Zhijing, Zhang Yi, Jiang Xingliang, et al.Study on aging characterization methods of composite insulators aging in natural environment for different years[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1368-1376. [17] 张志劲, 蒋兴良, 胡建林, 等. 环境参数对绝缘子表面覆冰增长的影响[J]. 高电压技术, 2010, 36(10): 2418-2423. Zhang Zhijing, Jiang Xingliang, Hu Jianlin, et al.Influence of environment parameters on the icing accretion on the surface of insulator[J]. High Voltage Engineering, 2010, 36(10): 2418-2423. [18] 张志劲, 黄海舟, 蒋兴良, 等. 基于流体力学的不同型式绝缘子覆冰增长过程分析[J]. 电工技术学报, 2012, 27(10): 35-43. Zhang Zhijing, Huang Haizhou, Jiang Xingliang, et al.Analysis of ice growth on different type insulators based on fluid dynamics[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 35-43. [19] 张志劲, 黄海舟, 蒋兴良, 等. 复合绝缘子雾凇覆冰厚度预测模型[J]. 电工技术学报, 2014, 29(6): 318-325. Zhang Zhijing, Huang Haizhou, Jiang Xingliang, et al.Model for predicting thickness of rime accreted on composite insulators[J]. Transactions of China Elec- trotechnical Society, 2014, 29(6): 318-325. [20] Makkonen L.Models for the growth of rime, glaze, icicles and wet snow on structures[J]. The Royal Society, 2000, 358(1776): 2913-2939. [21] Makkonen Lasse.A model of hoarfrost formation on a cable[J]. Cold Regions Science and Technology, 2013, 85: 256-260. [22] Fu Ping, Farzaneh Masoud.A CFD approach for modeling the Rrime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4-5): 181-188. [23] Fu Ping, Farzaneh Masoud, Bouchard Gilles.Two- dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146. [24] 蒋兴良, 张丽华. 导线覆冰碰冻率及最大覆冰直径分析[J]. 中国电机工程学报, 1999, 19(9): 10-13. Jiang Xingliang, Zhang Lihua.Collision and freezing efficiency of droplets with conductor and the possible maximum diameter of the iced conductor[J]. Pro- ceedings of the CSEE, 1999, 19(9): 10-13. [25] 蒋兴良, 韩兴波, 胡玉耀, 等. 冰棱生长对绝缘子覆冰过程的影响分析[J]. 电工技术学报, 2018, 33(9): 2089-2096. Jiang Xingliang, Han Xingbo, Hu Yuyao, et al.Analysis of icicles influences on icing process of insulators[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2089-2096. [26] 韩兴波, 蒋兴良, 毕聪来, 等. 绝缘子表面水滴局部碰撞特性的仿真计算[J]. 南方电网技术, 2018, 12(6): 60-65. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Simulation of local collision characteristics of water droplets on insulator[J]. Southern Power System Technology, 2018, 12(6): 60-65. [27] Jiang Xingliang, Han Xingbo, Hu Yuyao, et al.Model for ice wet growth on composite insulator and its experimental validation[J]. IET Generation, Trans- mission and Distribution, 2018, 12(3): 556-563. [28] 曹广州, 吉洪湖, 斯仁. 迎风面三维积冰过程中水膜流动的计算方法[J]. 航空动力学报, 2015(3): 677-685. Cao Guangzhou, Ji Honghu, Si Ren.Computational methodology of water film flow in three-dimensional ice accretion on upwind surface[J]. Journal of Aerospace Power, 2015(3): 677-685. [29] 韩兴波, 蒋兴良, 毕聪来, 等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报, 2019, 34(5): 1096-1105. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Prediction of icing environment parameters based on decentralized rotating conductors[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1096-1105. |
|
|
|