|
|
Design of Dynamic Peak Regulation Ancillary Service Market Bidding Mechanism Considering Quotation Supervision |
Luo Huanhuan1, Wang Hao2, Ge Weichun1,3, Liu Chuang2, Wang Yibo2 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110006 China; 2. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China; 3. State Grid Liaoning Electric Power Company Shenyang 110006 China |
|
|
Abstract With the further advancement of market-oriented transactions of the peak regulation ancillary service in Northeast China, the shortcomings of the current peak regulation ancillary service market mechanism have become increasingly prominent. Among them, the problems of low peak regulation enthusiasm of units and the false high peak ancillary prices need to be resolved urgently. Aiming at the problem of the low peak regulation enthusiasm of units, a floating peak regulation benchmark that follows load fluctuations was established to protect the units' peak regulation revenue. At the same time, in terms of the phenomenon of abnormal peak regulation prices, the peak regulation quotation formula of units was derived by analyzing the peak regulation costs of units and the first order condition for maximizing the profit of the units, and then the quotation rules that are conducive to market supervision were formulated. Finally, the bi-level bidding scheduling model and market settlement method were established to form dynamic peak regulation ancillary service market bidding mechanism in this paper. Based on the example of actual operation data of Liaoning power grid, it is verified that the dynamic peak regulation ancillary service market bidding mechanism proposed in this paper can effectively increase the peak regulation enthusiasm of units and rationalize the market price.
|
Received: 16 March 2020
|
|
|
|
|
[1] 夏鹏, 刘文颖, 张尧翔, 等. 考虑风电高阶不确定性的分布式鲁棒优化调度模型[J]. 电工技术学报, 2020, 35(1): 189-200. Xia Peng, Liu Wenying, Zhang Yaoxiang, et al.A distributionally robust optimization scheduling model considering higher-order uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 189-200. [2] Gao Chao, Liu Hui, Jiang Hao, et al.Research on the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 334-340. [3] 唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34(10): 2069-2078. Tang Chenghui, Zhang Fan, Zhang Ning, et al.Quadratic programming for power system economic dispatch based on the conditional probability distribution of wind farms sum power[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2069-2078. [4] 姜欣, 郑雪媛, 胡国宝, 等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报, 2019, 34(21): 4601-4610. Jiang Xin, Zheng Xueyuan, Hu Guobao, et al.Optimization of battery energy storage system locating and sizing for the grid under the market mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4601-4610. [5] 李佳琪, 陈健, 张文, 等. 高渗透率光伏配电网中电池储能系统综合运行控制策略[J]. 电工技术学报, 2019, 34(2): 437-446. Li Jiaqi, Chen Jian, Zhang Wen, et al.Integrated control strategy for battery energy storage systems in distribution networks with high photovoltaic penetration[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 437-446. [6] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970. Li Junhui, Zhang Jiahui, Mu Gang, et al.Stratified optimization scheduling of deep peak shaving for energy storage auxiliary thermal power units[J]. Power System Technology, 2019, 43(11): 3961-3970. [7] 黎静华, 汪赛. 兼顾技术性和经济性的储能辅助调峰优化方案[J]. 电力系统自动化, 2017, 41(9): 44-50. Li Jinghua, Wang Sai.Optimal combined peak shaving scheme using energy storage for auxiliary considering both technology and economy[J]. Automation of Electric Power Systems, 2017, 41(9): 44-50. [8] 尚瑨, 邰能灵, 刘琦, 等. 采用区间控制的蓄电池储能电站调峰运行控制策略[J]. 电工技术学报, 2015, 30(16): 221-229. Shang Jin, Tai Nengling, Liu Qi, et al.Load shifting scheme of battery energy storage system based on interval controlling[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 221-229. [9] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [10] 罗桓桓, 程中林, 孙婧卓, 等. 储热参与调峰辅助集中交易市场模式及优化认购模型[J]. 电力系统自动化, 2019, 43(24): 187-193. Luo Huanhuan, Cheng Zhonglin, Sun Jingzhuo, et al.Market mode and optimal subscription model of peak regulation auxiliary centralized trading with heat storage[J]. Automation of Electric Power Systems, 2019, 43(24): 187-193. [11] 吕泉, 陈天佑, 王海霞, 等. 配置储热后热电机组调峰能力分析[J]. 电力系统自动化, 2014, 38(11): 34-41. Lü Quan, Chen Tianyou, Wang Haixia, et al.Analysis on peak-load regulation ability of cogeneration unit with heat accumulator[J]. Automation of Electric Power Systems, 2014, 38(11): 34-41. [12] 王若谷, 王建学, 张恒, 等. 水电机组调峰服务的成本分析及实用补偿方法[J]. 电力系统自动化, 2011, 35(23): 41-46. Wang Ruogu, Wang Jianxue, Zhang Heng, et al.A cost analysis and practical compensation method for hydropower units peaking service[J]. Automation of Electric Power Systems, 2011, 35(23): 41-46. [13] 赵晓丽, 王玫, 赵越, 等. 基于火电机组容量差异的调峰辅助服务补偿机制改进模型[J]. 电力系统自动化, 2013, 37(4): 57-61. Zhao Xiaoli, Wang Mei, Zhao Yue, et al.A model of compensation mechanism on peak-regulating ancillary services based on capacity variance across thermal power units[J]. Automation of Electric Power Systems, 2013, 37(4): 57-61. [14] 吴迪, 程海花, 赵晋泉, 等. 基于平衡成本的风电分段及火电调峰补偿方法[J]. 电力系统自动化, 2019, 43(3): 116-123. Wu Di, Cheng Haihua, Zhao Jinquan, et al.Balancing cost based wind power segmentation and compensation method of peak regulation for thermal power[J]. Automation of Electric Power Systems, 2019, 43(3): 116-123. [15] 梅坚, 杨立兵, 李晓刚, 等. 调峰市场效用分析与低谷调峰市场设计[J]. 电力系统自动化, 2013, 37(21): 134-138. Mei Jian, Yang Libing, Li Xiaogang, et al.Utility analysis for peak regulation market and trading market design for peak regulation capacity in valley time[J]. Automation of Electric Power Systems, 2013, 37(21): 134-138. [16] 吕泉, 李玲, 王海霞, 等. 配置储热的热电厂与风电场的调峰定价机制[J].电力自动化设备, 2015, 35(9): 118-124. Lü Quan, Li Ling, Wang Haixia, et al.Peak regulation pricing mechanism between CHP-plant with heat accumulator and wind farm[J]. Electric Power Automation Equipment, 2015, 35(9): 118-124. [17] 胡朝阳, 毕晓亮, 王珂, 等. 促进负备用跨省调剂的华东电力调峰辅助服务市场设计[J]. 电力系统自动化, 2019, 43(5): 175-182. Hu Zhaoyang, Bi Xiaoliang, Wang Ke, et al.Design of peak regulation auxiliary service market for east china power grid to promote inter-provincial sharing of negative reserve[J]. Automation of Electric Power Systems, 2019, 43(5): 175-182. [18] 徐帆, 葛朝强, 吴鑫, 等. 区域电网省间调峰辅助服务市场机制与出清模型[J]. 电力系统自动化, 2019, 43(16): 109-115. Xu Fan, Ge Zhaoqiang, Wu Xin, et al.Market mechanism and clearing model of inter-provincial peak regulation ancillary service for regional power grid[J]. Automation of Electric Power Systems, 2019, 43(16): 109-115. [19] 张文韬, 王秀丽, 李言, 等. 大规模风电并网下多区域互联系统热电综合调度模型[J]. 电网技术, 2018, 42(1): 154-161. Zhang Wentao, Wang Xiuli, Li Yan, et al.An analysis model of multi-area interconnected power systems with large-scale wind power involved in comprehensive heating and power system scheduling[J]. Power System Technology, 2018, 42(1): 154-161. [20] 马洪艳, 韩笑, 严正, 等. 鲁棒性驱动的含风电不确定性区域间调峰互济方法[J]. 电力系统自动化, 2017, 41(7): 28-36. Ma Hongyan, Han Xiao, Yan Zheng, et al.Robustness driving reciprocal peak-regulation trading method of inter-regional grids containing wind power uncertainty[J]. Automation of Electric Power Systems, 2017, 41(7): 28-36. [21] 张子信, 王珊珊, 白哲. 东北电网统一调峰机制研究[J]. 东北电力技术, 2014, 35(11): 1-4. Zhang Zixin, Wang Shanshan, Bai Zhe.The study of Northeast grid integrate peaking mechanism[J]. Northeast Electric Power Technology, 2014, 35(11): 1-4. [22] 刘永奇, 张弘鹏, 李群, 等. 东北电网电力调峰辅助服务市场设计与实践[J]. 电力系统自动化, 2017, 41(10): 148-154. Liu Yongqing, Zhang Hongpeng, Li Qun, et al.Design and practice of peak regulation ancillary service market for Northeast China power grid[J]. Automation of Electric Power Systems, 2017, 41(10): 148-154. [23] 国家能源局东北监管局. 关于印发《东北区域发电厂并网运行管理实施细则》、《东北区域并网发电厂辅助服务管理细则》的通知(东北监能市场[2019]115号)[Z]. 2019. [24] 史连军, 周琳, 庞博, 等. 中国促进清洁能源消纳的市场机制设计思路[J]. 电力系统自动化, 2017, 41(24): 83-89. Shi Lianjun, Zhou Lin, Pang Bo, et al.Design ideas of electricity market mechanism to improve accommodation of clean energy in China[J]. Automation of Electric Power Systems, 2017, 41(24): 83-89. [25] 隋鑫, 卢盛阳, 苏安龙, 等. 计及风电和柔性负荷的核电多目标优化调度研究[J]. 中国电机工程学报, 2019, 39(24): 7232-7241. Sui Xin, Lu Shengyang, Su Anlong, et al.Research on multi-objective optimal scheduling of nuclear power considering wind power and flexible load[J]. Proceedings of the CSEE, 2019, 39(24): 7232-7241. [26] 王淑云, 娄素华, 吴耀武, 等. 计及火电机组深度调峰成本的大规模风电并网鲁棒优化调度[J]. 电力系统自动化, 2020, 44(1): 118-125. Wang Shuyun, Lou Suhua, Wu Yaowu, et al.Robust optimal dispatch of large-scale wind power integration considering deep peak regulation cost of thermal power units[J]. Automation of Electric Power Systems, 2020, 44(1): 118-125. [27] Knueven B, Ostrowski J, Watson J P.Exploiting identical generators in unit commitment[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4496-4507. [28] 于婧, 孙宏斌, 沈欣炜. 考虑储热装置的风电-热电机组联合优化运行策略[J]. 电力自动化设备, 2017, 37(6): 139-145. Yu Jing, Sun Hongbin, Shen Xinwei.Optimal operating strategy of integrated power system with wind farm, CHP unit and heat storage device[J]. Electric Power Automation Equipment, 2017, 37(6): 139-145. [29] 孙婧卓, 江全元, 程中林, 等. 大规模电储热参与调峰辅助双边交易容量及价格区间优化模型[J]. 电网技术, 2019, 43(6): 1995-2001. Sun Jingzhuo, Jiang Quanyuan, Cheng Zhonglin, et al.Capacity and price range optimization model for large-scale electric heat storage participating in auxiliary peaking service in bilateral transactions[J]. Power System Technology, 2019, 43(6): 1995-2001. [30] 吕泉, 陈天佑, 王海霞, 等. 含储热的电力系统电热综合调度模型[J]. 电力自动化设备, 2014, 34(5): 79-85. Lü Quan, Chen Tianyou, Wang Haixia, et al.Combined heat and power dispatch model for power system with heat accumulator[J]. Electric Power Automation Equipment, 2014, 34(5): 79-85. |
|
|
|