|
|
Application of the Generalized Finite Difference Method to Static Electromagnetic Problems |
Chen Jian1, Liu Chunming1, Wang Maohai2, Ge Xiaoning3, Liu Lianguang1 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. North China Branch of State Grid Power Dispatch & Control Center Beijing 100053 China; 3. State Key Lab of Control and Simulation of Power Systems and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract The generalized finite difference method(GFDM) is a new type of regional meshless discrete method. Based on the multivariate Taylor series expansion and the weighted least-squares fitting, the method expressed the partial derivative of unknown parameters in the governing function to a linear combination of adjacent node function values, which overcomes the dependence of the traditional finite difference method on the mesh. In this paper, the meshless generalized finite difference method is applied to the numerical simulation of static electromagnetic field problems. And the numerical discrete scheme of the method for static electromagnetic field problem is established. In order to verify the effectiveness of the proposed algorithm, the difference between GFDM method and the finite element method in dealing with the regular domain and the complex domain is comparative analysed. The results show that the algorithm of GFDM is stable and efficient for the different solution domain, and can achieve high computational accuracy.
|
Received: 28 April 2017
Published: 12 April 2018
|
|
|
|
|
[1] 金亮, 邱运涛, 杨庆新, 等. 基于云计算的电磁问题并行计算方法[J]. 电工技术学报, 2016, 31(22): 5-11. Jin Liang, QiuYuntao, Yang Qingxin, et al. A parallel computing method to electromagnetic problems based on cloud computing[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 5-11. [2] 乔骥, 邹军, 袁建生, 等. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 85-91. QiaoJi, Zou Jun, Yuan Jiansheng, et al. A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 85-91. [3] 王泽忠, 董博, 刘春明, 等. 华北地区大地电性结构三维建模及磁暴感应地电场有限元计算[J]. 电工技术学报, 2015, 30(3): 61-66. Wang Zezhong, Dong Bo, Liu Chunming, et al.Three-dimensional earth conductivity structure modelling in North China and calculation of geoelectromagnetic fields during geomagnetic disturbances based on finite element method[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 61-66. [4] 谢德馨, 朱占新, 吴东阳, 等. 大规模工程涡流场有限元计算的困境与展望[J]. 中国电机工程学报, 2015, 35(5): 1250-1257. XieDexin, Zhu Zhanxin, Wu Dongyang, et al. Plight and perspective of large-scale engineering eddy current field FEM computation[J]. Proceedings of the CSEE, 2015, 35(5): 1250-1257. [5] 刘素贞, 杨庆新, 陈海燕, 等. 无单元法在电磁场数值计算中的应用研究[J]. 电工技术学报, 2001, 16(2): 30-33. Liu Suzhen, Yang Qingxin, Chen Haiyan, et al.The element-free method for electromagnetic calculation[J]. Transactions of China Electrotechnical Society, 2001, 16(2): 30-33. [6] 王立鹏, 王欣彦, 唐任远. EFG-MG法及其在电磁场数值计算中的应用[J]. 电工技术学报, 2010, 25(1): 1-5. Wang Lipeng, Wang Xinyan, Tang Renyuan.An EFG-MG method and its application in numerical calculation of electromagnetic field[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 1-5. [7] 王洪友, 杨光源, 邵可然. 基于无单元伽辽金法的电机电磁场计算[J]. 中国电机工程学报, 2012, 32(15): 148-154, 3. Wang Hongyou, Yang Guangyuan, Shao Keran.Computations for electromagnetic field of Synchronous generators based on the element-free Galerkinmethod[J]. Proceedings of the CSEE, 2012, 32(15): 148-154, 3. [8] Karageorghis A, Lesnic D, Marin L.The method of fundamental solutions for solving direct and inverse Signoriniproblems[J]. Computers & Structures, 2015, 151: 11-19. [9] Sarler B, Vertnik R.Meshfree explicit local radial basis function collocation method for diffusion problems[J]. Computers & Mathematics with Applications, 2006, 51(8): 1269-1282. [10] GuYan, Chen Wen, Zhang Chuanzeng, et al. A meshless singular boundary method for three-dimensional inverse heat conduction problems in general anisotropic media[J]. International Journal of Heat and Mass Transfer, 2015, 84:91-102. [11] 陶文铨, 吴学红, 戴艳俊. 无网格数值求解方法[J]. 中国电机工程学报, 2010, 30(5): 1-10. Tao Wenshuan, Wu Xuehong, Dai Yanjun.Numerical solutions of meshlessmethods[J]. Proceedings of the CSEE, 2010, 30(5): 1-10. [12] Liu G R, Nguyen-Thoi T, Nguyen-Xuan H, et al.A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computers & Structures, 2009, 87(1-2): 14-26. [13] Chan H F, Fan C M, Kuo C W.Generalized finite difference method for solving two-dimensional non-linear obstacle problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(9): 1189-1196. [14] GuYan, Chen Wen, GaoHongwei, et al. A meshless singular boundary method for three-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2016, 107(2): 109-126. [15] Marin L.An alternating iterative MFS algorithm for the Cauchy problem for the modified Helmholtz equation[J]. Computational Mechanics, 2010, 45(6): 665-677. [16] Chen C S, Golberg M A, Hon Y C.The method of fundamental solutions and quasi-Monte-Carlo method for diffusion equations[J]. International Journal for Numerical Methods in Engineering, 1998, 43(8): 1421-1435. [17] Chen W, Shen L J, Shen Z J, et al.Boundary knot method for Poisson equations[J]. Engineering Analysis with Boundary Elements, 2005, 29(8): 756-760. [18] Chen K H, Chen J T, Kao J H.Regularized meshless method for solving acoustic eigenproblem with multiply-connected domain[J]. Computer Modeling in Engineering and Sciences, 2006, 16(1): 27-39. [19] 谷岩, 陈文. 改进的奇异边界法模拟三维位势问题[J]. 力学学报, 2012, 44(2): 351-360. Gu Yan, Chen Wen.Improved singular boundary method for three-dimensional potential problems[J]. Chinese Journal of theoretical and Applied Mechanics, 2012, 44(2): 351-360. [20] Young D L, Chen K H, Lee C W.Novel meshless method for solving the potential problems with arbitrary domain[J]. Journal of Computational Physics, 2005, 209(1): 290-321. [21] Chen J T, Chen I L, Chen K H, et al.A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function[J]. Engineering Analysis with Boundary Elements, 2004, 28(5):535-545. [22] Lu YY, Belytschko T, Gu L.A new implementation of the element free Galerkinmethod[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 113(3-4): 397-414. [23] Wang Chengan, Sadat H, Prax C.A new meshless approach for three dimensional fluid flow and related heat transfer problems[J]. Computers & Fluids, 2012, 69: 136-146. [24] Sadat H, Wang Chengan, Le Dez V.Meshless method for solving coupled radiative and conductive heat transfer in complex multi-dimensional geometries[J]. Applied Mathematics and Computation, 2012, 218(20): 10-25. [25] Benito J J, Urena F, Gavete L, et al.An h-adaptive method in the generalized finite differences[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(5-6): 735-759. [26] Urena F, Salete E, Benito J J, et al.Solving third- and fourth-order partial differential equations using GFDM: application to solve problems of plates[J]. International Journal of Computer Mathematics, 2012, 89(3): 366-376. [27] Gavete L, Gavete M L, Benito J J.Improvements of generalized finite difference method and comparison with other meshlessmethod[J]. Applied Mathematical Modelling, 2003, 27(10): 831-847. [28] Gu Yan, Wang Lei, Chen Wen, et al.Application of the meshless generalized finite difference method to inverse heat source problems[J]. International Journal of Heat and Mass Transfer, 2017, 108(A): 721-729. [29] 张淮清, 聂鑫, 王亚伟, 等. 径向基函数-虚边界法在电磁计算中的应用[J]. 电工技术学报, 2014, 29(4): 79-84. Zhang Huaiqing, NieXin, Wang Yawei, et al. Application of radial basis function-virtual boundary method in electromagnetic compution[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 79-84. [30] 王泽忠, 全玉生, 卢斌先. 工程电磁场[M]. 北京:清华大学出版社, 2004. |
|
|
|