Abstract:Electromagnetic detection technology has the advantages of high accuracy, high efficiency, cost-effectiveness, and stealthiness, which is highly promising in applications such as deep mineral exploration, deep geological monitoring, and deep defense engineering site selection. Electromagnetic detection mainly includes electromagnetic transmitters and electromagnetic receivers. Electromagnetic transmitters require high current, high precision in steady state, and fast variation in dynamic state. This paper proposes the IPOS+NPC type high-power electromagnetic transmitter structure and control strategy to solve the poor waveform quality problem caused by the low dynamic performance of high-power electromagnetic transmitters. Firstly, the combination control strategy of IPOS and power supply system is designed. The small signal transfer function of the IPOS and power supply combination is established, and the open-loop transfer function Bode plot is analyzed on the current inner loop, voltage-sharing loop, total voltage outer loop, and load current feedback control loop. The parameters of each loop's PI controller are designed and optimized. Secondly, the NPC three-level transmission bridge modulation strategy is proposed. Two types of dummy loads are designed to be connected to suppress large load variation disturbance on the front stage of the IPOS and power supply combination. The modulation strategy for balancing the neutral point potential of the three-level transmission bridge under two types of dummy load connection is compared. The performance advantage of dummy load type 2 is verified. A time compensation method is provided for balancing the neutral point potential under dummy load type 2. A simulation model and an experimental prototype of a 1 500 V/110 kW IPOS+NPC electromagnetic transmitter with four full-bridge converters are built. Load variation experiments are conducted on the closed-loop control system with or without load current feedback. The simulation results show that when the load current feedback is present, the adjustment time of the converter output voltage Vg_1 is significantly reduced, and the dynamic response of the electromagnetic transmitter system is rapid. During load variation and steady state, the balance of output voltage and current between the full-bridge converters can be achieved, which has good voltage and current regulation accuracy. The IPOS combination and the neutral point of the three-level transmission bridge are disconnected to verify the balancing effect of the modulation strategy. Simulations with different compensation times show the correctness of the time compensation method for balancing the neutral point potential under the proposed dummy load type 2. Finally, a high-power electromagnetic transmitter prototype is developed, including an uncontrolled rectifier module, IPOS combination, three-level transmission bridge, dummy load module, controller, and host computer. Field tests demonstrate that the electromagnetic transmitter has the advantages of high power, high voltage, good dynamic performance, and excellent waveform quality. The signal received by a drone in coordination with the high-power electromagnetic transmitter shows clear electromagnetic pulse signals, good repeatability, and consistency.
王颖杰, 陈永发, 胡秋恺, 郭文中. 深地探测用大功率电磁发射机控制系统小信号分析与设计[J]. 电工技术学报, 2024, 39(24): 7651-7662.
Wang Yingjie, Chen Yongfa, Hu Qiukai, Guo Wenzhong. Small Signal Analysis and Design of High Power Electromagnetic Transmitter for Deep Geophysical Electromagnetic Exploration. Transactions of China Electrotechnical Society, 2024, 39(24): 7651-7662.
[1] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128-2138. Di Qingyun, Zhu Rixiang, Xue Guoqiang, et al.New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6): 2128-2138. [2] 强建科, 罗延钟, 汤井田, 等. 航空瞬变电磁法关断电流斜坡响应的计算[J]. 地球物理学进展, 2012, 27(1): 105-111. Qiang Jianke, Luo Yanzhong, Tang Jingtian, et al.The response calculation of Rama function turn-off on the airborne transient electromagnetic method[J]. Progress in Geophysics, 2012, 27(1): 105-111. [3] 王胜涛, 林昌洪, 王旭东. 发射电流波形对瞬变电磁一维正反演的影响[J]. 现代地质, 2023, 37(1): 99-106. Wang Shengtao, Lin Changhong, Wang Xudong.Effect of transmitter waveform on 1D modeling and inversion of transient electromagnetic method data[J]. Geoscience, 2023, 37(1): 99-106. [4] Lin Jun, Kang Lili, Liu Changsheng, et al.The frequency-domain airborne electromagnetic method with a grounded electrical source[J]. Geophysics, 2019, 84(4): E269-E280. [5] 于生宝, 房钰, 高丽辉, 等. 基于改进粒子群优化算法的可控发射电流频率SHEPWM控制方法[J]. 吉林大学学报(理学版), 2020, 58(5): 1207-1214. Yu Shengbao, Fang Yu, Gao Lihui, et al.SHEPWM control method of controllable emission current frequency based on improved particle swarm optimization algorithm[J]. Journal of Jilin University (Science Edition), 2020, 58(5): 1207-1214. [6] 石福升, 刘莺莺, 郭鹏. 小功率智能多频发射系统研究与应用[J]. 物探与化探, 2007, 31(增刊1): 11-18. Shi Fusheng, Liu Yingying, Guo Peng.Research and application of low power intelligent multi-frequency transmitting system[J]. Geophysical and Geochemical Exploration, 2007, 31(S1): 11-18. [7] 韩琳, 陈柏超, 陈晓国. 三相整流电路谐波注入滤波方法[J]. 高电压技术, 2003, 29(7): 24-25, 53. Han Lin, Chen Bochao, Chen Xiaoguo.The reali-zation of a new method of harmonic current injection[J]. High Voltage Engineering, 2003, 29(7): 24-25, 53. [8] Shu Zeliang, Tang Jian, Guo Yuhua, et al.An efficient SVPWM algorithm with low computational overhead for three-phase inverters[J]. IEEE Transa-ctions on Power Electronics, 2007, 22(5): 1797-1805. [9] 王旭红, 张一鸣, 刘蔚. 多道瞬变电磁法发射机供电关键技术研究[J]. 上海交通大学学报, 2019, 53(3): 355-365. Wang Xuhong, Zhang Yiming, Liu Wei.Key technology study of power supply for multi-transient electromagnetic method transmitter[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 355-365. [10] 李佳鹏, 张一鸣, 王旭红, 等. 瞬变电磁发射机PI双环控制技术[J]. 通信电源技术, 2019, 36(1): 9-13. Li Jiapeng, Zhang Yiming, Wang Xuhong, et al.PI double loop control technology of transient elec-tromagnetic transmitter[J]. Telecom Power Techno-logy, 2019, 36(1): 9-13. [11] 于生宝, 贾少华, 李刚, 等. 电性源时间域电磁法大功率发射系统的研制[J]. 国外电子测量技术, 2014, 33(7): 49-52. Yu Shengbao, Jia Shaohua, Li Gang, et al.Implementation of high power transmitting system for grounded source time-domain electromagnetic method[J]. Foreign Electronic Measurement Tech-nology, 2014, 33(7): 49-52. [12] 陶海军, 张一鸣, 任喜国. 大功率海洋电磁发射机DC-DC可控源电路特性分析[J]. 电工技术学报, 2017, 32(16): 233-244. Tao Haijun, Zhang Yiming, Ren Xiguo.Characteri-stics analysis of high power marine electromagnetic transmitter DC-DC controlled source circuit[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 233-244. [13] 赵振兴. 大功率直流特种电源高效率变换若干关键技术及应用研究[D]. 长沙: 湖南大学, 2019. Zhao Zhenxing.Research on some key technologies and application of high-efficiency conversion of high-power DC special power supply[D]. Changsha: Hunan University, 2019. [14] 薛开昶. 地电场电性源发射机可靠性关键技术研究[D]. 吉林: 吉林大学, 2015. Xue Kaichang.Research on the key technology of the reliability of the geoelectric field electrical source transmitter[D]. Jilin: Jilin University, 2015. [15] 方天治. IPOP和ISOS逆变器组合系统的控制策略研究[D]. 南京: 南京航空航天大学, 2008. Fang Tianzhi.Research on control strategy of IPOP and ISOS inverter combined system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. [16] 孙志峰, 肖岚, 王勤. 输出并联型双有源全桥变换器控制技术研究综述[J]. 中国电机工程学报, 2021, 41(5): 1811-1830. Sun Zhifeng, Xiao Lan, Wang Qin.Review research on control technology of output parallel dual-active-bridge-converters[J]. Proceedings of the CSEE, 2021, 41(5): 1811-1830. [17] 张洋, 丘东元, 张波, 等. DC-DC变换器分层级构造方法[J]. 电工技术学报, 2023, 38(20): 5473-5487. Zhang Yang, Qiu Dongyuan, Zhang Bo, et al.Hierarchical synthesis methods of DC-DC con-verters[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5473-5487. [18] Young C M, Fan T R.Two-stage interleaved three-level DC/AC converter with neutral point voltage balancing[C]//2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, China, 2017: 1430-1434. [19] Tong Jun, Qiao Jianwei, Liu Lijun, et al.Neutral point potential balance control strategy of three level inverter[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 2018: 1357-1361. [20] 董志强, 王琛琛, 周明磊, 等. 基于SHEPWM的三电平三相逆变器中点电位主动平衡控制策略[J]. 电工技术学报, 2024, 39(4): 1147-1158. Dong Zhiqiang, Wang Chenchen, Zhou Minglei, et al.Neutral point potential active balance control strategy of three-level three-phase inverter based on SHEPWM[J]. Journal of Electrical Technology, 2024, 39(4): 1147-1158. [21] 侯聂, 宋文胜, 武明义. 双向全桥DC-DC变换器的负载电流前馈控制方法[J]. 中国电机工程学报, 2016, 36(9): 2478-2485. Hou Nie, Song Wensheng, Wu Mingyi.A load current feedforward control scheme of dual active bridge DC-DC converters[J]. Proceedings of the CSEE, 2016, 36(9): 2478-2485. [22] 张勇. 移相全桥软开关直流变换器建模与控制[D]. 天津: 天津大学, 2015. Zhang Yong.Modeling and control of phase-shifted full-bridge soft-switching DC converter[D]. Tianjin: Tianjin University, 2015. [23] Sarif M S M, Pei Tanxin, Annuar A Z. Modeling, design and control of bidirectional DC-DC converter using state-space average model[C]//2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 2018: 416-421. [24] Chothe S, Ugale R T, Gambhir A.Design and modeling of phase shifted full bridge DC-DC converter with ZVS[C]//2021 National Power Electronics Conference (NPEC), Bhubaneswar, India, 2021: 1-6. [25] 江凌峰, 龚邻骁, 金新宇, 等. 基于遗传算法的多模块IPOP双有源全桥DC-DC变换器总电流有效值优化策略[J]. 电工技术学报, 2023, 38(24): 6782-6797. Jiang Lingfeng, Gong Linxiao, Jin Xinyu, et al.Optimization strategy of total current effective value of multi-module IPOP dual-active full-bridge DC-DC converter based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6782-6797. [26] 陈武, 阮新波, 颜红. DC/DC多模块串并联组合系统控制策略[J]. 电工技术学报, 2009, 24(7): 93-102. Chen Wu, Ruan Xinbo, Yan Hong.Control strategy for DC/DC multiple modules series-parallel combined systems[J]. Transactions of China Electrotechnical Society, 2009, 24(7): 93-102.