[1] 程子霞, 邢威威, 张云霄, 等. 纳米MgO/环氧树脂复合材料的陷阱特性及对电树枝特性的影响研究[J]. 电工技术学报, 2022, 37(21): 5562-5569.
Cheng Zixia, Xing Weiwei, Zhang Yunxiao, et al.Study on trap properties of nano-MgO/epoxy resin composites and its influence on electrical tree properties[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5562-5569.
[2] 戴超, 朱光宇, 丁曼, 等. 高温阶梯式升压下等离子体处理纳米颗粒对环氧树脂复合材料的电荷动力学特性影响[J]. 电工技术学报, 2023, 38(21): 5712-5724.
Dai Chao, Zhu Guangyu, Ding Man, et al.Influence of plasma treated nanoparticles on charge dynamics of epoxy based nanocomposites under stepped boost at high temperature[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5712-5724.
[3] 曹春诚, 李文博, 程显, 等. 纳米Al2O3/环氧树脂复合材料微秒脉冲沿面闪络特性研究[J]. 高压电器, 2023, 59(6): 111-119.
Cao Chuncheng, Li Wenbo, Cheng Xian, et al.Study on surface flashover characteristic of nano-Al2O3/epoxy resin composites in microsecond pulse[J]. High Voltage Apparatus, 2023, 59(6): 111-119.
[4] Wang Sijiao, Zha Junwei, Wu Yunhui, et al.Preparation, microstructure and properties of polyethylene/alumina nanocomposites for HVDC insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3350-3356.
[5] 王霞, 王陈诚, 朱有玉, 等. 高压直流塑料电缆绝缘用纳米改性交联聚乙烯中的空间电荷特性[J]. 高电压技术, 2015, 41(4): 1096-1103.
Wang Xia, Wang Chencheng, Zhu Youyu, et al.Space charge profiles in XLPE nano dielectrics used for HVDC plastic cable insulation[J]. High Voltage Engineering, 2015, 41(4): 1096-1103.
[6] Peng Zhongchuan, Li Qian, Li Huayi, et al.Polyethylene-modified nano silica and its fine dispersion in polyethylene[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5892-5898.
[7] Balzer C, Armstrong M, Shan Bohan, et al.Modeling nanoparticle dispersion in electrospun nanofibers[J]. Langmuir, 2018, 34(4): 1340-1346.
[8] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911.
He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911.
[9] Roy M, Nelson J K, MacCrone R K, et al. Polymer nanocomposite dielectrics - the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643.
[10] 姜楠, 李志阳, 彭邦发, 等. 等离子体羟基化改性纳米SiO2粒子对绝缘纸绝缘特性的影响[J]. 电工技术学报, 2023, 38(24): 6817-6827.
Jiang Nan, Li Zhiyang, Peng Bangfa, et al.Effect of plasmas hydroxylation modified nano-SiO2 particles on insulation characteristics of insulating papers[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6817-6827.
[11] 刘道生, 周春华, 丁金, 等. 变压器纳米改性油纸复合绝缘研究综述[J]. 电工技术学报, 2023, 38(9): 2464-2479, 2490.
Liu Daosheng, Zhou Chunhua, Ding Jin, et al.Research overview of oil-paper composite insulation modified by nano particles for transformer[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2464-2479, 2490.
[12] 李进, 赵仁勇, 杜伯学, 等. 电工环氧绝缘件缺陷无损检测方法研究进展[J]. 电工技术学报, 2021, 36(21): 4598-4607.
Li Jin, Zhao Renyong, Du Boxue, et al.Research progress of nondestructive detection methods for defects of electrical epoxy insulators[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4598-4607.
[13] Chen Lianyi, Xu Jiaquan, Choi H, et al.Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528(7583): 539-543.
[14] Wang Fei, Ma Jinzhu, Xin Shaohui, et al.Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance[J]. Nature Communications, 2020, 11(1): 529.
[15] Wetteland C L, Liu Huinan.Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2018, 106(10): 2692-2707.
[16] 谭及兰. 改性的纳米氧化铝杂化三层复合PI薄膜的结构与介电性能[D]. 哈尔滨: 哈尔滨理工大学, 2014.
Tan Jilan.Structure and dielectric properties of modified nano-alumina hybrid three-layer PI composite films[D]. Harbin: Harbin University of Science and Technology, 2014.
[17] Zhang Naiyin, Xu Changlu, Azer A, et al.Dispersibility and characterization of polyvinyl alcohol-coated magnetic nanoparticles in poly(glycerol sebacate) for biomedical applications[J]. Journal of Nanoparticle Research, 2019, 21(12): 275.
[18] 付翔. 定量评价纳米粒子在基体中的分散性[D]. 杭州: 浙江理工大学, 2014.
Fu Xiang.Quantitative evaluation of dispersion of nanoparticles in the matrix[D]. Hangzhou: Zhejiang Sci-Tech University, 2014.
[19] Buck O.Harmonic generation for measurement of internal stresses as produced by dislocations[J]. IEEE Transactions on Sonics and Ultrasonics, 1976, 23(5): 346-350.
[20] Gedroits A A, Krasil’Nikov V A. Finite-amplitude elastic waves in solids and deviations from Hooke’s Law[J]. Soviet Journal of Experimental and Theoretical Physics, 1963, 16(5): 1122-1126.
[21] Nagy P B.Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998, 36(1/2/3/4/5): 375-381.
[22] Cantrell J, Yost W.Acoustic harmonic generation from fatigue-induced dislocation dipoles[J]. Philosophical Magazine, Part A, 1994, 69(2): 315-326.
[23] Buck O.Harmonic generation for measurement of internal stresses as produced by dislocations[J]. IEEE Transactions on Sonics and Ultrasonics, 1976, 23(5): 346-350.
[24] Demčenko A, Koissin V, Korneev V A.Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure[J]. Ultrasonics, 2014, 54(2): 684-693.
[25] 焦敬品, 李亮, 何存富, 等. 有机材料热老化损伤非线性超声检测试验研究[J]. 北京工业大学学报, 2016, 42(1): 24-29.
Jiao Jingpin, Li Liang, He Cunfu, et al.Experimental investigation of thermal aging of organic polymer materials with nonlinear ultrasonic method[J]. Journal of Beijing University of Technology, 2016, 42(1): 24-29.
[26] 张剑锋, 轩福贞, 项延训. 材料损伤的非线性超声评价研究进展[J]. 科学通报, 2016, 61(14): 1536-1550.
Zhang Jianfeng, Xuan Fuzhen, Xiang Yanxun.Evaluation of material damage using nonlinear ultrasonic wave[J]. Chinese Science Bulletin, 2016, 61(14): 1536-1550.
[27] Koissin V, Demčenko A, Korneev V A.Isothermal epoxy-cure monitoring using nonlinear ultrasonics[J]. International Journal of Adhesion and Adhesives, 2014, 52: 11-18.
[28] Demčenko A, Koissin V, Korneev V A.Noncollinear wave mixing for measurement of dynamic processes in polymers: physical ageing in thermoplastics and epoxy cure[J]. Ultrasonics, 2014, 54(2): 684-693.
[29] 王汉卿, 成立, 廖瑞金, 等. 复合绝缘子交界面非线性力学模型及弱粘接缺陷无损检测方法[J]. 中国电机工程学报, 2019, 39(3): 895-905, 968.
Wang Hanqing, Cheng Li, Liao Ruijin, et al.Nonlinear mechanical model of composite insulator interface and nondestructive testing method for weak bonding defects[J]. Proceedings of the CSEE, 2019, 39(3): 895-905, 968.
[30] Wang Hanqing, Cheng Li, Liao Ruijin, et al.Nonlinear ultrasonic nondestructive detection and modelling of kissing defects in high voltage composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 924-931.
[31] 成立, 方伟, 王汉卿, 等. 基于非线性声学的纳米复合电介质分散性整体无损评估方法[J]. 中国电机工程学报, 2021, 41(15): 5401-5411.
Cheng Li, Fang Wei, Wang Hanqing, et al.Overall nondestructive evaluation method for the dispersion of nanocomposite dielectrics based on nonlinear acoustics[J]. Proceedings of the CSEE, 2021, 41(15): 5401-5411.
[32] Punnose S, Mukhopadhyay A, Sarkar R, et al.Characterisation of microstructural damage evolution during tensile deformation of a near-α titanium alloy: Effects of microtexture[J]. Materials Science and Engineering: A, 2014, 607: 476-481.
[33] Xiang Yanxun, Deng Mingxi, Xuan Fuzhen.Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique[J]. Journal of Nondestructive Evaluation, 2014, 33(2): 279-287.
[34] Zhao Junhua, Lu Lixin, Zhang Zhiliang, et al.Continuum modeling of the cohesive energy for the interfaces between films, spheres, Coats and substrates[J]. Computational Materials Science, 2015, 96: 432-438.
[35] Ben Sudong, Zhao Junhua, Rabczuk T.A theoretical analysis of interface debonding for coated sphere with functionally graded interphase[J]. Composite Structures, 2014, 117: 288-297.
[36] Hossain D, Tschopp M A, Ward D K, et al.Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene[J]. Polymer, 2010, 51(25): 6071-6083.
[37] 张发友. 基于非线性超声的材料损伤检测研究[D]. 郑州: 郑州大学, 2019.
Zhang Fayou.Study on damage detection of materials based on nonlinear ultrasonic[D]. Zhengzhou: Zhengzhou University, 2019.
[38] Richardson J M.Harmonic generation at an unbonded interface-I. Planar interface between semi-infinite elastic media[J]. International Journal of Engineering Science, 1979, 17(1): 73-85.
[39] Cantrell J H, Yost W T.Acoustic nonlinearity and cumulative plastic shear strain in cyclically loaded metals[J]. Journal of Applied Physics, 2013, 113(15): 153506.
[40] Cantrell J H, Zhang X G.Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network[J]. Journal of Applied Physics, 1998, 84(10): 5469-5472.
[41] Hiki Y, Granato A V.Anharmonicity in noble metals; higher order elastic constants[J]. Physical Review, 1966, 144(2): 411-419.
[42] 江念. 金属非金属粘接强度非线性超声检测信号处理方法研究[D]. 太原: 中北大学, 2015.
Jiang Nian.Research of signal processing method for nonlinear ultrasonic testing of adhesive strength between metal and nonmetal components[D]. Taiyuan: North University of China, 2015.
[43] 李秋锋, 李建慧, 卢超, 等. 搅拌摩擦加工CNTs/Al复合材料超声非线性评价[J]. 焊接学报, 2017, 38(11): 87-92, 133.
Li Qiufeng, Li Jianhui, Lu Chao, et al.Ultrasonic nonlinear evaluation for carbon-nanotubes reinforced aluminum matrix composites processed by friction stir processing method[J]. Transactions of the China Welding Institution, 2017, 38(11): 87-92, 133.
[44] Hong Xiaobin, Lin Xiaohui, Yang Bo, et al.Crack detection in plastic pipe using piezoelectric transducers based on nonlinear ultrasonic modulation[J]. Smart Materials and Structures, 2017, 26(10): 104012.
[45] Alston J, Croxford A, Potter J, et al.Development of a nonlinear ultrasonic NDE technique for detection of kissing bonds in composites[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring,, Portland, Oregon, USA, 2017: 101691J.
[46] 陆铭慧, 刘磨, 张雪松, 等. RTM玻璃纤维/E51环氧树脂复合材料孔隙含量对超声特征参数的影响[J]. 复合材料学报, 2018, 35(2): 291-297.
Lu Minghui, Liu Mo, Zhang Xuesong, et al.Effect of void content on ultrasonic characteristic parameters of RTM glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 291-297.
[47] Wang Chuang, Zhou Gang, Sun Qing, et al.Numerical simulation of the interfacial stress between epoxy resin and metal conductor of power equipment during epoxy curing[J]. High Voltage, 2022, 7(5): 903-915. |