Research Progress of Combined Electromagnetic Forming Technology
Xiong Qi1,2, Qiu Shuang1,3, Li Yanxin1,3, Zhao Xiang1,3, Zhou Lijun1,3
1. College of Electrical Engineering & New Energy China Three Gorges University Yichang 443002 China; 2. Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China; 3. Hubei Provincial Engineering Technology Research Center for Microgrid China Three Gorges University Yichang 443002 China
Abstract:Electromagnetic forming (EMF) is a special forming method with high energy and high speed for metal materials by using pulsed electromagnetic force. Unlike traditional mechanical stamping, EMF is not limited by force transfer medium properties and is simple in device design. The application had significant limitations because the early electromagnetic forming scheme essentially realized the repulsive force forming effect of the workpiece, and the repulsive force was primarily dominated by the electromagnetic force analysis. With its many benefits, combined electromagnetic forming technology is currently gaining traction in the media. In order to achieve more flexible, accurate, and efficient forming, the combined electromagnetic forming technology combines drive-coils, force fields, and forming processes to diversify the magnetic field configuration and forming force field. Based on the EMF principles and electromagnetic force control methods, the latest research results are divided into three parts according to the different application levels: drive-coil combined type, electromagnetic force combined type and forming process combined type. This review focuses on the implementation concepts, technological solutions and application implications of the three types. The first part is the drive-coil combined type. Due to the limited strength of a single coil and the poor uniformity of the electromagnetic force generated during the forming process, another option is a more flexible combined drive-coil method. Multiple drive-coils provide the electromagnetic force required for forming and improving the magnetic force distribution. The drive-coil combined electromagnetic forming is presented separately from the combined coil repulsive forming and attractive forming. The drive-coil combined electromagnetic forming method skillfully neutralizes the harsh requirements on the coil. The second part is electromagnetic force combined type. The application of electromagnetic force in traditional electromagnetic forming is all in a single direction, a single attraction or repulsion force, and the combined effect of electromagnetic force has not broken through. In practical applications, the electromagnetic force can be used for both single-directional and multi-directional loading and forming; it can be used as a forming force as well as an auxiliary force (blank holding force, transmission force); and the attractive electromagnetic force can be combined with the repulsive electromagnetic force. The third part is forming process combined type. Pure electromagnetic forming technology's range of applications is restricted by its limitations in real-world manufacturing. Many experts and scholars have proposed a process that combines electromagnetic forming technology with welding and mechanical manufacturing. A new type of combined forming scheme combined with traditional stamping, electro-hydraulic forming, and welding is introduced respectively. Lastly, research hotspots on the EMF are predicted and the technology's future is explored. At present, there are still many unsolved problems in the existing electromagnetic forming technology. How to obtain a universal drive-coil forming scheme, how to make use of the flexible point of the electromagnetic force, and how to combine two or even multiple manufacturing processes to fully utilize various forming process advantages are meaningful. This will provide important reference and guidance for further in-depth research of the EMF and will accelerate its promotion and application in key application fields such as lightweight integration of aerospace and automotive.
[1] 熊奇, 唐红涛, 王沐雪, 等. 2011年以来电磁成形研究进展[J]. 高电压技术, 2019, 45(4): 1171-1181. Xiong Qi, Tang Hongtao, Wang Muxue, et al.Research progress of electromagnetic forming technique since 2011[J]. High Voltage Engineering, 2019, 45(4): 1171-1181. [2] 邱立, 李彦涛, 苏攀, 等. 电磁成形中电磁技术问题研究进展[J]. 电工技术学报, 2019, 34(11): 2247-2259. Qiu Li, Li Yantao, Su Pan, et al.Research on electromagnetic problems in electromagnetic forming process[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2247-2259. [3] 黎镇浩, 曹全梁, 赖智鹏, 等. 电流丝法在电磁成形线圈电流和工件电磁力计算中的应用[J]. 电工技术学报, 2018, 33(18): 4181-4190. Li Zhenhao, Cao Quanliang, Lai Zhipeng, et al.Application of current filament method on the calculation of current and force in electromagnetic forming[J]. Transactions on China Electrotechnical Society, 2018, 33(18): 4181-4190. [4] 邱立, 余一杰, 聂小鹏, 等. 管件电磁胀形过程中的材料变形性能问题与电磁力加载方案[J]. 电工技术学报, 2019, 34(2): 212-218. Qiu Li, Yu Yijie, Nie Xiaopeng, et al.Study on material deformation performance and electromagnetic force loading in electromagnetic tube expansion process[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 212-218. [5] 李成祥, 石鑫, 周言, 等. 针对H 型线圈的电磁脉冲焊接仿真及线圈截面结构影响分析[J]. 电工技术学报, 2021, 36(23): 4992-5001. Li Chengxiang, Shi Xin, Zhou Yan, et al.Electro- magnetic pulse welding simulation for H-type coil and analysis of the influence of coil cross-sectional structure[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4992-5001. [6] 熊奇, 周丽君, 杨猛, 等. 单脉冲电磁成形中洛伦兹力在时间上的双向竞争关系及其对成形效果的影响[J]. 电工技术学报, 2022, 37(14): 3453-3463. Xiong Qi, Zhou Lijun, Yang Meng, et al.The two- way competitive relationship of Lorentz force in time in single pulse electromagnetic forming and its influence on forming effect[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3453-3463. [7] 邱立, 杨新森, 常鹏, 等. 双线圈轴向压缩式管件电磁胀形电磁力分布规律与管件成形性能研究[J].电工技术学报, 2019, 34(14): 2855-2862. Qiu Li, Yang Xinsen, Chang Peng, et al.Electromagnetic force distribution and forming performance in electromagnetic tube expansion process with two coils[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2855-2862. [8] Shisode M P, Hazrati J, Mishra T, et al.Modeling mixed lubrication friction for sheet metal forming applications[J]. Procedia Manufacturing, 2020, 47: 586-590. [9] Sigvant M, Pilthammar J, Hol J, et al.Friction in sheet metal forming: influence of surface roughness and strain rate on sheet metal forming simulation results[J]. Procedia Manufacturing, 2019, 29: 512-519. [10] 熊奇, 朱鑫辉, 赵翔, 等. AZ31镁合金管件电磁吸引式成形动态特性研究[J]. 电工技术学报, 2023, 38(10): 2577-2588, 2636. Xiong Qi, Zhu Xinhui, Zhao Xiang, et al.Research of dynamic characteristics in electromagnetic attraction forming of AZ31 magnesium alloy tube[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2577-2588, 2636. [11] Yu Haiping, Li Chunfeng, Deng Jianghua.Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis[J]. Journal of Materials Processing Technology, 2009, 209(2): 707-713. [12] Bach F, Bormann D, Walden L.Influence of forming rate on the microstructure and properties of materials subjected to electromagnetic forming asynopsis[C]//Proceedings of 3rd International Conference on High Speed Forming, Dortmund, Germany, 2008: 55-64. [13] Psyk V, Risch D, Kinsey B L, et al.Electromagnetic forming—a review[J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829. [14] 李忠, 李春峰, 江宏伟, 等. 管坯电磁胀形的塑性动力分析[J]. 材料科学与工艺, 2004, 12(6): 637-641. Li Zhong, Li Chunfeng, Jiang Hongwei, et al.Dynamic plastic analysis of electromagnetic tube bulging[J]. Materials Science and Technology, 2004, 12(6): 637-641. [15] Yu Haiping, Xu Zhidan, Fan Zhisong, et al.Mechanical property and microstructure of aluminum alloy-steel tubes joint by magnetic pulse welding[J]. Materials Science and Engineering: A, 2013, 561: 259-265. [16] 李娜, 莫健华, 李奋强, 等. 铝合金板材电磁脉冲拉深实验与有限元模拟[J]. 锻压装备与制造技术, 2014, 49(4): 93-98. Li Na, Mo Jianhua, Li Fenqiang, et al.Experiment and finite element simulation of electromagnetic pulsed deep drawing process for aluminum alloy sheet[J]. China Metalforming Equipment & Manufacturing Technology, 2014, 49(4): 93-98. [17] 陈石, 胡建华, 孙樊, 等. 铝合金曲面零件电磁校形试验研究[J]. 武汉理工大学学报, 2010, 32(19): 36-38, 101. Chen Shi, Hu Jianhua, Sun Fan, et al.Experimental research on electromagnetic bending and sizing of complex curved parts[J]. Journal of Wuhan University of Technology, 2010, 32(19): 36-38,101. [18] 张骁. 脉冲强磁场作用下管件胀拉成形数值模拟与实验研究[D]. 武汉: 华中科技大学, 2017. Zhang Xiao.Numerical simulation and experimental study of tube bulging-drawing forming under pulsed high magnetic fields[D]. Wuhan: Huazhong University of Science and Technology, 2017. [19] Xiong Qi, Huang Hao, Deng Changzheng, et al.A method to improve forming accuracy in electromagnetic forming of sheet metal[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 57(3): 367-375. [20] Xiong Qi, Li Zhe, Tang Jianhua, et al.A flexible and economical method for electromagnetic flanging of tubes with field shapers[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(3): 1169-1177. [21] Kamal M, Daehn G S.A uniform pressure electromagnetic actuator for forming flat sheets[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2): 369-379. [22] Lai Zhipeng, Han Xiaotao, Cao Quanliang, et al.The electromagnetic flanging of a large-scale sheet workpiece[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5. [23] Qiu Li, Yu Yijie, Xiong Qi, et al.Analysis of electromagnetic force and deformation behavior in electromagnetic tube expansion with concave coil based on finite element method[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [24] 邱立, 罗宝妮, 何琴, 等.基于凸型线圈双向电磁力加载的管件电磁翻边成形[J]. 热加工工艺, 2024(9): 152-158. Qiu Li, Luo Baoni, He Qin, etc. Electromagnetic flanging forming of pipe fittings based on bidirectional electromagnetic force loading of convex coils[J]. Hot working Process, 2024(9): 152-158. [25] 李亮. 我国多时空脉冲强磁场成形制造基础研究进展[J]. 中国基础科学, 2016, 18(4): 25-35. Liang Li.Progress of the basic research on the space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology[J]. China Basic Science, 2016, 18(4): 25-35. [26] 熊奇. 大尺寸铝合金板件电磁成形设计与实现[D]. 武汉: 华中科技大学, 2016. Xiong Qi.Design and realization of electromagnetic forming for large-scale aluminum alloy sheet[D]. Wuhan: Huazhong University of Science and Technology, 2016. [27] 赖智鹏. 多时空脉冲强磁场金属板材电磁成形研究[D]. 武汉: 华中科技大学, 2017. Lai Zhipeng.Research on multi-space-time pulsed high magnetic field based electromagnetically sheet metal forming[D]. Wuhan: Huazhong University of Science and Technology, 2017. [28] 刘宁. 基于可控电磁力加载的大尺寸铝合金壳体件电磁整体成形技术研究[D]. 武汉: 华中科技大学, 2020. Liu Ning.Research on electromagnetic integral forming technology of large-scale aluminum alloy shell parts under controllable electromagnetic force[D]. Wuhan: Huazhong University of Science and Technology, 2020. [29] Cao Quanliang, Lai Zhipeng, Xiong Qi, et al.Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 309-316. [30] Li Meng, Lai Zhipeng, Xu Wei, et al.A versatile electromagnetic actuator for sheet and tube flanging: process principle, simulation, and experimental validation[J]. Journal of Manufacturing Processes, 2022, 81: 311-327. [31] Zhang Zixuan, Lai Zhipeng, Li Changxing, et al.Production and use of adaptive pulsed Lorentz force for multi-step electromagnetic sheet metal forming: method, experimental validation, and application[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(7/8): 5521-5536. [32] Lai Zhipeng, Cao Quanliang, Han Xiaotao, et al.Design, implementation, and testing of a pulsed electromagnetic blank holder system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [33] Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al.Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225: 185-194. [34] Du Limeng, Xia Liangyu, Li Xian, et al.Adjustable Current waveform via altering the damping coefficient: a new way to reduce Joule heating in electromagnetic forming coils[J]. Journal of Materials Processing Technology, 2021, 293: 117086. [35] 王紫叶, 杨猛, 熊奇. 电磁成形过程中线圈温升及结构优化[J]. 电工技术学报, 2021, 36(18): 3891-3901. Wang Ziye, Yang Meng, Xiong Qi.Coil temperature rise and structure optimization in electromagnetic forming[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3891-3901. [36] Deng Jianghua, Li Chunfeng, Zhao Zhiheng, et al.Numerical simulation of magnetic flux and force in electromagnetic forming with attractive force[J]. Journal of Materials Processing Technology, 2007, 184(1/2/3): 190-194. [37] Cao Quanliang, Lai Zhipeng, Xiong Qi, et al.Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 309-316. [38] Xiong Qi, Tang Hongtao, Wang Muxue, et al.Design and implementation of tube bulging by an attractive electromagnetic force[J]. Journal of Materials Processing Technology, 2019, 273: 116240. [39] Xiong Qi, Tang Hongtao, Deng Changzhen, et al.Electromagnetic attraction-based bulge forming in small tubes: fundamentals and simulations[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [40] Xiong Qi, Gao Dun, Li Zhe, et al.Electromagnetic attraction bulging of small aluminum alloy tube based on a field shaper[J].The International Journal of Advanced Manufacturing Technology, 2021, 117(1/2): 511-521. [41] 熊奇, 李青山, 李哲, 等. 集磁器对电磁成形驱动线圈发热影响及机理[J]. 电工技术学报, 2023, 38(2) :285-296. Xiong Qi, Li Qingshan, Li Zhe, et al.Influence and mechanism of field shaper on heating of electromagnetic forming drive coil[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 285-296. [42] Ouyang Shaowei, Wang Chen, Li Changxing, et al.Improving the uniformity and controllability of tube deformation via a three-coil forming system[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(5): 1533-1544. [43] Ouyang Shaowei, Xu Xiaofei, Li Xiaoxiang, et al.Systematic investigation of deformation behavior of tubes in a three-coil electromagnetic forming process[J].The International Journal of Advanced Manufacturing Technology, 2022, 119(7/8): 5163-5174. [44] Qiu Li, Li Yantao, Yu Yijie, et al.Electromagnetic force distribution and deformation homogeneity of electromagnetic tube expansion with a new concave coil structure[J]. IEEE Access, 2019, 7: 117107-117114. [45] Qiu Li, Yu Yijie, Yang Yuqi, et al.Analysis of electromagnetic force and experiments in electromagnetic forming with local loading[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 57(1): 29-37. [46] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Produce a large aluminium alloy sheet metal using electromagnetic-incremental (EM-IF) forming method: experiment and numerical simulation[C]//5th International Conference on High Speed Forming, Dortmund, Germany, 2012: 59-70. [47] Cui Xiaohui, Mo J H, Li J J, et al.Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology[J]. Journal of Materials Processing Technology, 2014, 214(2): 409-427. [48] Cui Xiaohui, Li Jianjun, Mo Jianhua, et al.Investigation of large sheet deformation process in electromagnetic incremental forming[J]. Materials & Design, 2015, 76: 86-96. [49] Yu Haiping, Jin Yanye, Hu Lan, et al.Two-step method to improve geometry accuracy of elongated hole flanging by electromagnetic forming[J].The International Journal of Advanced Manufacturing Technology, 2020, 106(7/8): 3117-3129. [50] Su Hongliang, Huang Liang, Li Jianjun, et al.Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 99-116. [51] Zhang Qixian, Huang Liang, Li Jianjun, et al.Investigation of dynamic deformation behaviour of large-size sheet metal parts under local Lorentz force[J]. Journal of Materials Processing Technology, 2019, 265: 20-33. [52] Su Hongliang, Huang Liang, Li Jianjun, et al.On the forming uniformity during a single layer forming of electromagnetic incremental forming[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(11/12): 4561-4572. [53] Li Hongwei, Yao Xuan, Yan Siliang, et al.Analysis of forming defects in electromagnetic incremental forming of a large-size thin-walled ellipsoid surface part of aluminum alloy[J]. Journal of Materials Processing Technology, 2018, 255: 703-715. [54] Liu Xianlong, Huang Liang, Li Jianjun, et al.An electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 411-431. [55] Li Xiaoxiang, Cao Quanliang, Lai Zhipeng, et al.Bulging behavior of metallic tubes during the electromagnetic forming process in the presence of a background magnetic field[J]. Journal of Materials Processing Technology, 2020, 276: 116411. [56] Zhang Wang, Ouyang Shaowei, Du Limeng, et al.Electromagnetic forming with automatic feedback control of Lorentz force distribution: a new forming method and its application to high-uniformity tube deformation[J]. Journal of Materials Processing Technology, 2023, 313: 117869. [57] 欧阳少威. 双级线圈下管件电磁吸引力成形行为研究[D]. 武汉: 华中科技大学, 2019. Ouyang Shaowei.The research of tube electromagnetic attractive forming behavior based on a dual-coil system[D]. Wuhan: Huazhong University of Science and Technology, 2019. [58] 熊奇, 杨猛, 周丽君, 等. 双线圈吸引式板件电磁成形过程中的涡流竞争问题[J]. 电工技术学报, 2021, 36(10): 2007-201. Xiong Qi, Yang Meng, Zhou Lijun, et al.Eddy currents competition in electromagnetic forming process of plates by double-coil attraction[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2007-2017. [59] 黄攀, 黄亮, 苏红亮, 等. 基于板料电磁翻边的电磁力分布对成形质量影响的数值模拟研究[J]. 稀有金属材料与工程, 2019, 48(9): 2987-2993. Huang Pan, Huang Liang, Su Hongliang, et al.Electromagnetic force distribution and its effect on the forming quality for numerical simulation study of electromagnetic flanging of sheet metal[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2987-2993. [60] 刘欣, 杨景超, 李恒, 等. 管路构件塑性变形连接技术研究进展及挑战[J]. 航空学报, 2022, 43(4): 172-192. Liu Xin, Yang Jingchao, Li Heng, et al.Critical review on tube joining by plastic deformation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4):172-192. [61] 张文忠, 陈浩, 董占国, 等. 基于磁脉冲技术的铝合金板材圆孔翻边工艺研究[J]. 航天制造技术, 2009(4): 5-7, 16. Zhang Wenzhong, Chen Hao, Dong Zhanguo, et al.Research on formability of aluminum alloy flanged hole by EMF[J]. Aerospace Manufacturing Technology, 2009(4): 5-7, 16. [62] Yu Haiping, Zheng Qiuli, Wang Shoulong, et al.The deformation mechanism of circular hole flanging by magnetic pulse forming[J]. Journal of Materials Processing Technology, 2018, 257: 54-64. [63] 王煜, 张松, 龚雄, 等. 电磁脉冲成形技术在铝合金壁板翻边孔上的应用与研究[J]. 制造业自动化, 2021, 43(1)1-3,11. Wang Yu, Zhang Song, Gong Xiong, et al.Application and research of electromagnetic pulse forming used on flanging hole of aluminum alloy panels[J]. Manufacturing Automation, 2021, 43(1):1-3 [64] 谢冰鑫, 黄亮, 黄攀, 等. 铝合金板料电磁翻边全流程工艺研究[J]. 中国机械工程, 2021, 32(2): 220-226 Xie Bingxin, Huang Liang, Huang Pan, et al.Research on whole process route of electromagnetic flanging of aluminum alloy sheets[J]. China Mechanical Engineering, 2021, 32(2): 220-226 [65] Xiong Qi, Huang Hao, Xia Liangyu, et al.A research based on advance dual-coil electromagnetic forming method on flanging of small-size tubes[J].The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 4087-4094. [66] 周中玉. 基于双级线圈径向驱动的孔电磁强化方法研究[D]. 武汉: 华中科技大学, 2014. Zhou Zhongyu.Research of hole electromagnetic strengthening method based on two-stage coils and radially driven[D]. Wuhan: Huazhong University of Science and Technology, 2014. [67] Qiu Li, Yu Yijie, Wang Ziwei, et al.Analysis of electromagnetic force and deformation behavior in electromagnetic forming with different coil systems[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 57(3): 337-345. [68] 张望, 王于東, 李彦涛, 等. 基于双向电磁力加载的管件电磁翻边理论与实验[J]. 电工技术学报, 2021, 36(14) : 2904-2911. Zhang Wang, Wang Yudong, Li Yantao, et al.Theory and experiment of tube electromagnetic flanging based on bidirectional electromagnetic force loading[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2904-2911. [69] 李盛飞, 朱险峰, 刘子伟, 等. 带集磁器的吸引式电磁力小管件翻边方法[J]. 强激光与粒子束, 2023, 35(5): 220281. Li Shengfei, Zhu Xianfeng, Liu Ziwei, et al.Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper[J]. High Power Laser and Particle Beams, 2023, 35(5): 220281. [70] Xiong Qi, Zhao Xiang, Zhou Hang, et al.A triple-coil electromagnetic two-step forming method for tube fitting[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(11): 3905-3915. [71] Obermeyer E J, Majlessi S A.A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts[J]. Journal of Materials Processing Technology, 1998, 75(1/2/3): 222-234. [72] Lai Zhipeng, Cao Quanliang, Han Xiaotao, et al.Design, implementation, and testing of a pulsed electromagnetic blank holder system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [73] Huang Yujie, Han Xiaotao, Cao Quanliang, et al.Design and analysis of a pulsed electromagnetic blankholder system for electromagnetic forming[J]. Procedia Engineering, 2017, 207: 347-352. [74] Lai Zhipeng, Cao Quanliang, Zhang Bo, et al.Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system[J]. Journal of Materials Processing Technology, 2015, 222: 13-20. [75] Lai Zhipeng, Cao Quanliang, Han Xiaotao, et al.Investigation on plastic deformation behavior of sheet workpiece during radial Lorentz force augmented deep drawing process[J]. Journal of Materials Processing Technology, 2017, 245: 193-206. [76] Chen Meng, Lai Zhipeng, Cao Quanliang, et al.Investigation on deformation control of sheet metal in radial Lorentz force augmented deep drawing[J].The International Journal of Advanced Manufacturing Technology, 2019, 105(5/6): 2369-2381. [77] Chen Meng, Lai Zhipeng, Cao Quanliang, et al.Improvement on formability and forming accuracy in electromagnetic forming of deep-cavity sheet metal part using a dual-coil system[J]. Journal of Manufacturing Processes, 2020, 57: 209-221. [78] Kamal M, Daehn G S.A uniform pressure electromagnetic actuator for forming flat sheets[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2): 369-379. [79] Fu M W, Chan W L.A review on the state-of-the-art microforming technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(9): 2411-2437. [80] 李研彪, 陈强, 张利. 钛合金薄壁曲面液态金属-磨粒流加工仿真与试验研究[J]. 机械工程学报, 2021, 57(23): 220-231. Li Yanbiao, Chen Qiang, Zhang Li.Titanium alloy Thin-walled curved surface liquid metal-abrasive flow machining simulation and experimental research[J]. Journal of Mechanical Engineering, 2021, 57(23): 220-231. [81] Ran J Q, Fu M W, Chan W L.The influence of size effect on the ductile fracture in micro-scaled plastic deformation[J]. International Journal of Plasticity, 2013, 41: 65-81. [82] 何志鹏, 赵虎. 微型断路器电寿命评估[J]. 电工技术学报, 2022, 37(4): 1031-1040. He Zhipeng, Zhao Hu.Electrical lifespan evaluation of miniature circuit breakers[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 1031-1040. [83] Wu Zelin, Cao Quanliang, Fu Junyu, et al.An inner-field uniform pressure actuator with high performance and its application to titanium bipolar plate forming[J]. International Journal of Machine Tools and Manufacture, 2020, 155: 103570. [84] 周言, 李成祥, 杜建, 等. 放电电压对镁-铝磁脉冲焊接中金属射流及结合界面的影响[J]. 电工技术学报, 2022, 37(2): 459-468, 495. Zhou Yan, Li Chengxiang, Du Jian, et al.Investigation on the effect of discharge voltage on metal jet and bonded interface in Mg-Al magnetic pulse welding[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 459-468, 495. [85] 周纹霆, 董守龙, 王晓雨, 等. 电磁脉冲焊接电缆接头的装置的研制及测试[J]. 电工技术学报, 2019, 34(11): 2424-2434. Zhou Wenting, Dong Shoulong, Wang Xiaoyu, et al.Development and test of magnetic pulse welding cable joint device[J]. Transactions of China Electro- technical Society, 2019, 34(11): 2424-2434. [86] Vohnout V J.A hybrid quasi-static/dynamic process for forming large sheet metal parts from alumi-num alloys[D]. Columbus: Ohio State University, 1998. [87] Li Guangyao, Deng Huakun, Mao Yunfei, et al.Study on AA5182 aluminum sheet formability using combined quasi-static-dynamic tensile processes[J]. Journal of Materials Processing Technology, 2018, 255: 373-386. [88] Shang Jianhui, Daehn G.Electromagnetically assisted sheet metal stamping[J]. Journal of Materials Processing Technology, 2011, 211(5): 868-874. [89] Imbert J, Worswick M.Electromagnetic reduction of a pre-formed radius on AA 5754 sheet[J]. Journal of Materials Processing Technology, 2011, 211(5): 896-908. [90] Imbert J, Worswick M.Reduction of a pre-formed radius in aluminium sheet using electromagnetic and conventional forming[J]. Journal of Materials Processing Technology, 2012, 212(9): 1963-1972. [91] Choi M K, Huh H, Park N.Process design of combined deep drawing and electromagnetic sharp edge forming of DP980 steel sheet[J]. Journal of Materials Processing Technology, 2017, 244: 331-343. [92] Iriondo E, Alcaraz J L, Daehn G S, et al.Shape calibration of high strength metal sheets by electromagnetic forming[J]. Journal of Manufacturing Processes, 2013, 15(2): 183-193. [93] Daehn G S, Vivek A, Shang Jianhui.Electromagnetically assisted sheet metal stamping and deep drawing[M]//Tekkaya A E, Homberg W, Brosius A. 60 Excellent Inventions in Metal Forming. Berlin. Heidelberg: Springer Vieweg, 2015: 107-112. [94] 高嵩, 于长春, 梁继才, 等. 铝型材多点三维拉压复合弯曲成形工艺[J]. 机械工程学报, 2019, 55(20): 152-159. Gao Song, Yu Changchun, Liang Jicai, et al.Multi-points 3D stretch-press bending technology for aluminum profile[J]. Journal of Mechanical Engineering, 2019, 55(20): 152-159. [95] 刘素贞, 田钰霖, 张闯, 等. 铝合金拉伸塑性变形的非线性电磁超声检测[J]. 电工技术学报, 2020, 35(15): 3153-3160. Liu Suzhen, Tian Yulin, Zhang Chuang, et al.Nonlinear electromagnetic acoustic detection of aluminum alloys with tensile plastic deformation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3153-3160. [96] Rotpai U, Arlai T, Nusen S, et al.Novel flow stress prediction and work hardening behavior of aluminium alloy AA7075 at room and elevated temperatures[J]. Journal of Alloys and Compounds, 2022, 891: 162013. [97] 解社娟, 吴磊, 仝宗飞, 等. 塑性变形和疲劳对304不锈钢电磁属性的影响研究及微观结构分析(英文)[J]. 电工技术学报, 2018, 33(14): 3170-3176. Xie Shejuan, Wu Lei, Tong Zongfei, et al.Investigation of electromagnetic properties of 304 austenitic stainless steel with plastic deformation and fatigue damage and microstructure analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3170-3176. [98] 詹梅, 王隽文, 樊晓光, 等. 薄壁构件淬火变形调控研究进展[J]. 锻压技术, 2018, 43(7): 62-70. Zhan Mei, Wang Junwen, Fan Xiaoguang, et al.Research progress on quenching distortion control for thin-walled components[J]. Forging & Stamping Technology, 2018, 43(7): 62-70. [99] 梅龙, 刘维, 邹希凡, 等. 采用均匀压力线圈的铝合金曲面零件电磁校形[J]. 锻压技术, 2020, 45(9): 118-122. Mei Long, Liu Wei, Zou Xifan, et al.Electromagnetic sizing for aluminium alloy curved surface part by uniform pressure coils[J]. Forging & Stamping Technology, 2020, 45(9): 118-122. [100] 何逸汉, 于海平, 邓将华, 等. 铝合金T形型材电磁校形试验研究[J]. 塑性工程学报, 2020, 27(7): 86-93. He Yihan, Yu Haiping, Deng Jianghua, et al.Experimental study on electromagnetic shape correction of aluminum alloy with T-profile[J]. Journal of Plasticity Engineering, 2020, 27(7): 86-93. [101] 毛云飞. AA5052铝合金高速下本构及断裂模型研究[D]. 长沙: 湖南大学, 2019. Mao Yunfei.Research on constitutive model and ductile fracture criterion of AA5052 at high work piece speed[D]. Changsha: Hunan University, 2019. [102] Li Changxing, Lai Zhipeng, Wang Chen, et al.Toward better metal flow control in electrohydraulic sheet forming by combining with electromagnetic approach[J]. Journal of Materials Processing Technology, 2022, 299: 117343. [103] Wang Ziye, Lai Zhipeng, Li Changxing, et al.Data-driven method for process optimization in electromagnetic-electrohydraulic hybrid high-velocity sheet metal forming[J].The International Journal of Advanced Manufacturing Technology, 2022, 121(7/8): 4355-4365. [104] Zhang Yi, Li Xiaoxiang, Tang Yinghao, et al.Research into controlling the material flow for electrohydraulic forming alloy tubes by a pulsed magnet[J]. IEEE Transactions on Applied Super-conductivity, 2022, 32(6): 1-5. [105] Wang Ziye, Lai Zhipeng, Han Xiaotao, et al.Antisymmetric deformation behavior during eccentric explosion electro-hydraulic sheet forming process[J]. Materials and Manufacturing Processes, 2023, 38(6): 692-700. [106] 李成祥, 杜建, 周言, 等. 电磁脉冲板件焊接设备研制及镁/铝合金板焊接实验研究[J]. 电工技术学报, 2021, 36(10): 2018-2027. Li Chengxiang, Du Jian, Zhou Yan, et al.Development of electromagnetic pulse welding equipment for plates and experimental research on magnesium/aluminum alloy welding[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2018-2027. [107] 黄海川. 铜铝管磁脉冲—半固态复合辅助钎焊工艺过程模拟及实验研究[D]. 武汉: 武汉理工大学, 2019. Huang Haichuan.Simulation and experimental research on the process of magnetic pulse-semisolid hybrid assisted brazing of Cu/Al tubes[D]. Wuhan: Wuhan University of Technology, 2019. [108] 王振东, 黄尚宇, 李佳琪, 等. Zn-Al钎料固相率及组分对Cu/Al管磁脉冲-半固态复合辅助钎焊接头质量的影响初探[J]. 材料科学与工艺, 2020, 28(4): 1-7. Wang Zhendong, Huang Shangyu, Li Jiaqi, et al.Preliminary study on the influence of solder solid phase rate and composition of Zn-Al filler metal on the quality of magnetic pulse-semisolid hybrid assisted soldering of Cu/Al tubes[J]. Materials Science and Technology, 2020, 28(4): 1-7. [109] 高远, 黄尚宇, 邓凌波, 等. 温度条件对铜管/铝磁脉冲-半固态复合辅助钎焊接头微观组织的影响[J]. 锻压技术, 2019, 44(10): 169-175. Gao Yuan, Huang Shangyu, Deng Lingbo, et al.Influence of temperature condition on microstructure of Cu tube/Al tube brazed joint produced by magnetic pulse and semi-solid composite auxiliary technology[J]. Forging & Stamping Technology, 2019, 44(10): 169-175. [110] 冯珂, 黄尚宇, 邓凌波, 等. Zn-Al-Si钎料厚度对磁脉冲辅助半固态钎焊Cu/Al管接头组织性能的影响[J]. 材料科学与工艺, 2021, 29(5): 39-47. Feng Ke, Huang Shangyu, Deng Lingbo, et al.Effect of Zn-Al-Si filler metal thickness on microstructure and properties of Cu/Al tube joints by magnetic pulse assisted semi-solid brazing[J]. Materials Science and Technology, 2021, 29(5): 39-47. [111] 黄海川, 黄尚宇, 李清宁, 等. 放电电压对Cu/Al管磁脉冲-半固态复合辅助钎焊质量的影响[J]. 塑性工程学报, 2020, 27(2): 60-67. Huang Haichuan, Huang Shangyu, Li Qingning, et al.Effect of discharge voltage on quality of Cu/Al tube magnetic pulse-semisolid hybrid assisted brazing[J]. Journal of Plasticity Engineering, 2020, 27(2): 60-67. [112] Farhang B, Tanrikulu A A, Ganesh-Ram A, et al.Electromagnetic field-assisted laser welding of NiTi to stainless steel: towards a lightweight, high-strength joint with preserved properties[J]. Journal of Materials Processing Technology, 2023, 314: 117888.