Arc Discharge Model of Resistive Intrinsically Safe Circuit Based on Functional Data Analysis Algorithm
Zhu Ran1, Xu Liwen2, Meng Qinghai1
1. School of Electrical and Control Engineering North China University of Technology Beijing 100144 China; 2. College of Science North China University of Technology Beijing 100144 China
Abstract:Different from the traditional inductive and capacitive intrinsically safe circuits, the resistive intrinsically safe circuit is difficult to describe accurately due to its three different discharge waveforms. The experimental waveform and theoretical analysis show that the arc of the resistive circuit has multi-dimensional characteristics, and there is a strong correlation between it and environmental factors. It is difficult to solve it directly by traditional modeling methods, which makes the intrinsic safety criterion of the resistive circuit lack a complete theoretical system, resulting in multiple accidents in the actual operating environment. In order to solve such problems, this paper proposes a discharge model based on functional data analysis regression algorithm on the basis of studying the arc discharge characteristic curve of resistive intrinsically safe circuit, and establishes the arc discharge energy criterion of resistive intrinsically safe circuit based on this model. Firstly, the functional data analysis regression algorithm framework is constructed, and the mathematical models of arc discharge voltage and current are established respectively based on the three essential different discharge waveform characteristics of low energy arc discharge when the electrode of IEC spark test device is disconnected. Secondly, a power model independent of voltage and current model is proposed theoretically. Based on the power model, the energy criterion of resistive intrinsically safe circuit is supplemented. The model is simulated by Matlab software and a classification method of arc discharge waveform is proposed. Finally, a spark discharge test platform is built to verify the feasibility of the arc model and the accuracy of the prediction effect. The model does not require any restrictions on the frequency of data acquisition, and converts the dynamic function curve into 'original data', which has infinite dimensional spatial characteristics and reduces the error caused by the simplification of the formula in the derivation process. The comparison between the experimental data and the simulation results shows that under the experimental conditions carried out in this paper, at least 80% of the actual data of the three different discharge waveforms can be described by the model, which proves the feasibility and universality of the functional data analysis regression model. The evaluation of the prediction effect of the discharge model established by the functional data analysis regression algorithm shows that at least 84% of the actual data can be predicted by the arc voltage, current and power model under the test conditions in this paper. It solves the problem that the arc discharge waveform of resistive intrinsically safe circuit cannot be accurately described because of three types. In addition, the model is used to explore the circuit parameter conditions of three cases of arc discharge in resistive circuits. It is found that under the condition of the power supply voltage parameter of 24 V≤E≤48 V and the resistance range of 20 Ω≤R≤360 Ω, when the normal working current of the circuit is I≤0.15 A or I≥0.6 A, the arc discharge is characterized by an early increase in power; when the normal operating current value is 0.15 A<I<0.6 A, the arc discharge is characterized by the initial power basically unchanged and the later rapid decline. Through simulation and experimental results, the following conclusions are drawn: (1) The proposed functional data analysis arc model solves the problem that the arc discharge waveform of the resistive intrinsically safe circuit cannot be accurately described due to three types. (2) The proposed model uses the idea of functional data analysis to transform the dynamic function curves of different characteristics into 'original data' for analysis, which reduces the error caused by formula simplification. (3) Compared with the traditional model, the proposed model can predict the discharge arc voltage and current values at different discharge times, which solves the problem that the traditional model cannot explore the numerical solution.
[1] 皇金锋, 李林鸿, 任舒欣, 等. 考虑滤波电容等效串联电阻的输出本质安全型Buck-Boost变换器分析与设计[J]. 电工技术学报, 2021, 36(8): 1658-1670. Huang Jinfeng, Li Linhong, Ren Shuxin, et al.Analysis and design of an intrinsically safe Buck-Boost converter on considering of the filter capacitor with equivalent series resistance[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1658-1670. [2] 朱林, 刘树林, 刘柏清, 等. 本质安全低压直流电路放电理论及数值研究综述[J]. 工矿自动化, 2022, 48(8): 16-25. Zhu Lin, Liu Shulin, Liu Boqing, et al.Review of discharge theory and numerical research on intrinsically safe low voltage DC circuits[J]. Journal of Mine Automation, 2022, 48(8): 16-25. [3] 柯拉夫钦克 B C, 谢洛夫 B N, 叶雷金 A T, 等. 安全火花电路[M]. 张丙军, 译. 北京: 煤炭工业出版社, 1981. [4] Uber C, Hilbert M, Felgner A, et al.Electrical discharges caused by opening contacts in an ignitable atmosphere - part I: analysis of electrical parameters at ignition limits[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 114-121. [5] 孟庆海, 胡天禄, 牟龙华. 本质安全电路低能电弧放电特性及参数[J]. 电工技术学报, 2000, 15(3): 28-30, 35. Meng Qinghai, Hu Tianlu, Mu Longhua.Low energy arc discharge characteristic and parameters of intrinsically safe circuits[J]. Transactions of China Electrotechnical Society, 2000, 15(3): 28-30, 35. [6] 赵永秀, 刘树林, 马一博. 爆炸性试验电感电路分断放电特性分析与建模[J]. 煤炭学报, 2015, 40(7): 1698-1704. Zhao Yongxiu, Liu Shulin, Ma Yibo.Analysis and modeling of inductor-disconnected-discharged chara-cteristics based on explosive test[J]. Journal of China Coal Society, 2015, 40(7): 1698-1704. [7] 孟庆海, 王进己. 本质安全电感电路电弧放电时间双正态分布[J]. 电工技术学报, 2017, 32(2): 119-124. Meng Qinghai, Wang Jinji.Dual normal distribution of arc discharge time for inductive intrinsically safe circuits[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 119-124. [8] 赵永秀, 刘树林, 王瑶, 等. 安全火花试验电极热场致发射模型和温度效应的数值模拟研究[J]. 电工技术学报, 2019, 34(20): 4179-4187. Zhao Yongxiu, Liu Shulin, Wang Yao, et al.Research on numerical simulation of thermal field electron emission and temperature effect for safety spark test electrode[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4179-4187. [9] 赵永秀, 张颖, 田江晖. 爆炸性环境电感分断建弧机理及影响因素[J]. 高电压技术, 2022, 48(9): 3765-3775. Zhao Yongxiu, Zhang Ying, Tian Jianghui.Arcing mechanism and influencing factors on inductor- disconnected-discharge in explosive environment[J]. High Voltage Engineering, 2022, 48(9): 3765-3775. [10] 康骞, 许春雨, 田慕琴, 等. 电势电容电路短路火花放电影响因素分析[J]. 工矿自动化, 2020, 46(8): 38-43, 63. Kang Qian, Xu Chunyu, Tian Muqin, et al.Analysis of influencing factors of short-circuit spark discharge in electric potential capacitance circuit[J]. Industry and Mine Automation, 2020, 46(8): 38-43, 63. [11] 王玉婷, 刘树林, 马一博, 等. 简单电容电路最小点燃电压曲线的数值化研究[J]. 电工技术学报, 2014, 29(增刊1): 345-350. Wang Yuting, Liu Shulin, Ma Yibo, et al.Research on digitization of the minimum ignition voltage curve of simple capacitive circuit[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 345-350. [12] 刘树林, 钟久明, 樊文斌, 等. 电容电路短路火花放电特性及其建模研究[J]. 煤炭学报, 2012, 37(12): 2123-2128. Liu Shulin, Zhong Jiuming, Fan Wenbin, et al.Short circuit discharge characteristics of the capacitive circuit and its mathematical model[J]. Journal of China Coal Society, 2012, 37(12): 2123-2128. [13] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008. Liu Jianhua.A study on discharge theory and non-explosion evaluating method of the intrinsically safe circuits for explosive atmospheres[D]. Xuzhou: China University of Mining and Technology, 2008. [14] 赵永红. 容性本安电路放电模型及放电特性分析[J]. 煤炭工程, 2021, 53(6): 172-175. Zhao Yonghong.Discharge model and characteristic analysis of capacitive intrinsic safety circuit[J]. Coal Engineering, 2021, 53(6): 172-175. [15] 刘树林, 于昌隆. IEC安全火花试验装置点燃因素研究[J]. 西安科技大学学报, 2023, 43(1): 167-174. Liu Shulin, Yu Changlong.Study on igniting factors of IEC safety spark test apparatus[J]. Journal of Xi’an University of Science and Technology, 2023, 43(1): 167-174. [16] 宋璐雯, 刘树林. 电极移动速度对电容短路火花放电特性的影响[J]. 西安科技大学学报, 2022, 42(4): 826-832. Song Luwen, Liu Shulin.Effect of electrode moving speed on the spark discharge characteristics of capacitor short circuit[J]. Journal of Xi’an University of Science and Technology, 2022, 42(4): 826-832. [17] 王党树, 栾哲哲, 古东明, 等. 基于电荷等效法的电容短路放电微观特性数值模拟研究[J]. 电工技术学报, 2021, 36(13): 2684-2696. Wang Dangshu, Luan Zhezhe, Gu Dongming, et al.Numerical simulation research on microscopic characteristics of capacitor short-circuit discharge based on charge equivalent method[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2684-2696. [18] 刘建华, 王崇林, 姜建国. 直流电阻性本质安全电路低能电弧放电分析[J]. 中国矿业大学学报, 2003, 32(4): 440-442, 451. Liu Jianhua, Wang Chonglin, Jiang Jianguo.Analysis of low-energy arc discharge of D.C. resistive intrinsically safe circuits[J]. Journal of China University of Mining & Technology, 2003, 32(4): 440-442, 451. [19] 巩泉役, 彭克, 陈羽, 等. 基于电弧随机性和卷积网络的交流串联电弧故障识别方法[J]. 电力系统自动化, 2022, 46(24): 162-169. Gong Quanyi, Peng Ke, Chen Yu, et al.Identification method of AC series arc fault based on randomness of arc and convolutional network[J]. Automation of Electric Power Systems, 2022, 46(24): 162-169. [20] 刘树林, 郝雨蒙, 李艳, 等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报, 2021, 36(3): 542-551. Liu Shulin, Hao Yumeng, Li Yan, et al.Design methods of intrinsically safe Buck converter based on the maximum output power[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 542-551. [21] Baranowski J, Grobler-Dębska K, Kucharska E.Recognizing VSC DC cable fault types using Bayesian functional data depth[J]. Energies, 2021, 14(18): 5893. [22] Guo Yi, Tierney S, Gao Junbin.Robust functional manifold clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 777-787. [23] 王英, 曹丽, 陈小强, 等. 考虑双弓间距的双弓网Habedank电弧数学模型研究[J]. 高压电器, 2021, 57(11): 18-26. Wang Ying, Cao Li, Chen Xiaoqiang, et al.Research on Habedank arc mathematics model of double pantograph-catenary considering double pantographs interval[J]. High Voltage Apparatus, 2021, 57(11): 18-26. [24] 郝莎, 徐建源, 林莘, 等. 基于隔离开关结构和操作特性的电弧放电模型研究与应用[J]. 高压电器, 2022, 58(4): 131-136. Hao Sha, Xu Jianyuan, Lin Xin, et al.Research and application of arc discharge model based on the structure and operation characteristics of discon-nector[J]. High Voltage Apparatus, 2022, 58(4): 131-136. [25] 国家市场监督管理总局, 国家标准化管理委员会. 爆炸性环境第4部分:由本质安全型“i”保护的设备: GB/T 3836.4—2021[S]. 北京: 中国标准出版社, 2021. [26] 孟庆海, 牟龙华, 王崇林, 等. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(3): 292-294. Meng Qinghai, Mu Longhua, Wang Chonglin, et al.Electric power criterion of intrinsic safe circuits[J]. Journal of China University of Mining & Technology, 2004, 33(3): 292-294.