电工技术学报  2024, Vol. 39 Issue (6): 1671-1683    DOI: 10.19595/j.cnki.1000-6753.tces.222226
电机及其系统 |
一种优化开关磁阻电机换相区控制策略的高效率转矩分配函数
杨帆1,2,3,4, 陈昊1,2,3,4, 李晓东5, Miguel Pablo Aguirre6, Muhammad Asghar Saqib7
1.中国矿业大学电气工程学院 徐州 221116;
2.新能源电动车技术与装备中东欧国家国际联合研究中心 徐州 221008;
3.江苏省高校新能源发电与电动车国际合作联合实验室 徐州 221008;
4.徐州市新能源电动车技术与装备重点实验室 徐州 221008;
5.澳门科技大学创新工程学院 澳门 999078;
6.布宜诺斯艾利斯工学院电子工程系 布宜诺斯艾利斯 B1636;
7.巴基斯坦工程技术大学电气工程系 讷瓦布沙阿 44000
An Efficient Torque Sharing Function for Optimizing the Commutation Zone Control Strategy of Switched Reluctance Motors
Yang Fan1,2,3,4, Chen Hao1,2,3,4, Li Xiaodong5, Miguel Pablo Aguirre6, Muhammad Asghar Saqib7
1. School of Electrical Engineering China University of Mining and Technology Xuzhou 221116 China;
2. International Joint Research Center of Central and Eastern European Countries on New Energy Electric Vehicle Technology and Equipment Xuzhou 221008 China;
3. International Cooperation Joint Laboratory of New Energy Power Generation and Electric Vehicles of Jiangsu Province Colleges and Universities Xuzhou 221008 China;
4. Xuzhou Key Laboratory of New Energy Electric Vehicle Technology and Equipment Xuzhou 221008 China;
5. Faculty of Innovation Engineering Macau University of Science and Technolog Macau 999078 China;
6. Instituto Tecnológico de Buenos Aires Department of Electronic Engineering Buenos Aires Argentina B1636;
7. Department of Electrical Engineering University of Engineering and Technology Nawabshah Pakistan 44000
全文: PDF (5298 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 转矩分配函数被广泛应用于抑制开关磁阻电机的转矩脉动。然而,输入相转矩跟踪不足或者输出相产生较大的负转矩这两种情况通常会导致电机的转矩脉动难以得到有效抑制,并降低电机的运行效率。因此,为了能够有效降低电机的转矩脉动并提高电机的效率,提出了一种新型的转矩分配函数控制策略。在提出的转矩分配函数控制策略中,电机的换相区域分为两个区域。在前一区域中,通过降低输入相转矩分配的比例,可以实现输入相实际转矩快速跟踪参考转矩,电机的转矩脉动有效降低。同时由于在输入相电感变化率较低时减少输入相分配的转矩,从而输入相的峰值电流随之降低,电机的转矩电流比提高。在后一区域中,将输出相的电流在转子对齐位置附近处减小到0,以避免产生较大的负转矩。因此,在所提出的方案下,电机的转矩脉动得到有效抑制,电机的效率也得到了提高。为了验证该方法的有效性,在一台12/8三相开关磁阻电机上进行了仿真和实验。结果表明,所提出的转矩分配函数控制策略能有效降低开关磁阻电机转矩脉动,也能有效地提高开关磁阻电机的运行效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨帆
陈昊
李晓东
Miguel Pablo Aguirre
Muhammad Asghar Saqib
关键词 开关磁阻电机转矩分配函数负转矩转矩电流比效率    
Abstract:The development of electric vehicles can effectively solve the problem of energy shortage. At the same time, the torque ripple and efficiency are essential characteristics of the operational performance of electric vehicles. Switched reluctance motor (SRM) is widely used in electric vehicles due to its strong robustness, fast speed, and low cost. Therefore, it is very important to effectively reduce the torque ripple and improve the efficiency of switched reluctance motors. The following aspects are necessary to achieve efficient control and low torque ripple: (1) Distribute more torque to the phase with stronger torque generation ability in the commutation area. The outgoing phase has a higher torque generation ability at the initial position of the commutation zone. Then, more torque should be allocated to the outgoing phase in this area. The efficiency of the motor will be improved. In this situation, the actual torque can better track the reference torque when the incoming phase torque generation ability is weak. The torque ripple of the motor will also be reduced. (2) Reduce the negative torque of the motor. However, most previous studies have mainly considered one aspect. Therefore, a new TSF control method is proposed that divides the motor commutation area into two areas, which are controlled separately. At the end of the latter area, the phase current of the outgoing phase will decrease to zero, and the negative torque can be reduced. Meanwhile, less torque will be distributed to the incoming phase when the incoming phase has less torque generation ability.
Firstly, the proposed torque sharing function (TSF) based on the sigmoid function is divided into two parts in the commutation area. Then, the two regions of the commutation area will be controlled separately. Secondly, a simple adaptive control strategy is adopted to obtain the relevant parameters of the proposed method. The optimal control parameters can be effectively obtained under different loads and speeds when the adaptive control strategy is adopted. In general, the complexity of the algorithm and the computational costs will be reduced.
The experimental results of an actual switched reluctance motor show that the peak phase current is 17 A, the torque ripple is 38.89%, and the motor efficiency is 31.2% when the sinusoidal TSF control strategy is adopted at 500 r/min and 0.6 N·m. However, the peak phase current, the torque ripple, and the motor efficiency are 12 A, 20.67%, and 36.7% at 500 r/min and 0.6 N·m, and 18.1 A, 47.77%, and 40.4% at 1 000 r/min and 0.6 N·m using the sinusoidal TSF control strategy. In contrast, when the proposed strategy is adopted, the peak phase current is 14.5 A, the torque ripple is 28.45%, and the efficiency of the motor is 44.3%. At 1 500 r/min and 0.6 N·m, the peak phase current, the torque ripple, and the efficiency are 20.7 A, 52.22%, and 42.9% when the sinusoidal TSF control strategy is adopted, while they are 16.2 A, 31.33%, and 46.1% using the proposed strategy. The results show that the peak current of the proposed control strategy and the torque ripple will be reduced, and the efficiency of the motor will be improved at different working conditions.
Key wordsSwitched reluctance motor    torque sharing function    negative torque    torque current ratio    efficiency   
收稿日期: 2022-11-29     
PACS: TM301  
基金资助:国家自然科学基金项目(51977209)、徐州市推动科技创新专项资金项目-创新能力建设计划(KC21315)和南京市国际合作项目(202002034)资助
通讯作者: 陈 昊 男,1969年生,教授,博士生导师,研究方向为开关磁阻电机系统及其控制。E-mail: hchen@cumt.edu.cn   
作者简介: 杨 帆 男,1991年生,博士研究生,研究方向为开关磁阻电机系统及其控制。E-mail: ts17130051a3@cumt.edu.cn
引用本文:   
杨帆, 陈昊, 李晓东, Miguel Pablo Aguirre, Muhammad Asghar Saqib. 一种优化开关磁阻电机换相区控制策略的高效率转矩分配函数[J]. 电工技术学报, 2024, 39(6): 1671-1683. Yang Fan, Chen Hao, Li Xiaodong, Miguel Pablo Aguirre, Muhammad Asghar Saqib. An Efficient Torque Sharing Function for Optimizing the Commutation Zone Control Strategy of Switched Reluctance Motors. Transactions of China Electrotechnical Society, 2024, 39(6): 1671-1683.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.222226          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I6/1671