A Continuous-Control-Set Type Model-Free Predictive Current Control Based on Time-Series for Permanent Magnet Synchronous Motor Drives
Wei Yao1, Ke Dongliang1, Huang Dongxiao1, Wang Fengxiang1, Kang Jinsong2
1. National and Local Joint Engineering Research Center for Electrical Drives and Power Electronics Quanzhou Institute of Equipment Manufacturing Haixi Institutes Chinese Academy of Science Jinjiang 362216 China; 2. Institute of Rail Transit Tongji University Shanghai 201804 China
Abstract:The finite-control-set type (FCS-type) predictive control method is not ideal for electric vehicles because of its limited control accuracy and high harmonic content. In contrast, the continuous-control-set type (CCS-type) model-free predictive current control (MF-PCC) is more suitable. The model-free predictive current control (MF-PCC) uses a time-series model as a discrete transfer function, which is more compliant with the motion characteristics of the motor system. However, calculating the inverse of the model in the digital processor makes it challenging to apply in the CCS-type. Therefore, a time-series-based CCS-type MF-PCC strategy is proposed in this paper for a permanent magnet synchronous motor (PMSM) driving system. The plant is accurately expressed, and the control strategy is easily realized in the CCS-type by the online building and updating the time-series model based on the sampled data. Firstly, this approach establishes a time-series model and updates the regressive vector summarizing input and output signals based on sampled data. Secondly, all undetermined coefficients in the model are estimated through the recursive least square (RLS) algorithm. Herein, the current operating state is described as a discrete- time transfer function within the model. Finally, according to predictive reference by the Lagrange algorithm, the regressive vector is updated to predict the output signal and generate the control law. This time-series model is easily realized in the CCS type with good accuracy, addresses the problem of the complex calculation process, and eliminates all time-varying physical parameters and their influences in the a priori model of the plant. Simulation and experimental results on a PMSM driving system show that the proposed method resists disturbances and tracks the reference successfully to suit electric vehicle driving operations. The disturbances mainly include changed parameter mismatches, load torque, and DC voltage. Continuous Fourier analysis and accumulated error comparisons between different control strategies demonstrate that the proposed method achieves a range of total harmonic distortion (THD) between 3.3%~3.9%, with an average value of 3.53%. Compared to conventional strategies, the proposed method has the minimum ascending slope of accumulated error of current. Additionally, to analyze the impact of system noise on driver perception, the proposed method is tested under different speed references and load torques. Finally, experimental results are obtained with different parameter mismatches of typical physical parameters, including stator resistance, stator inductance, and magnet flux linkage, and compared using continuous Fourier analysis. The following conclusions can be drawn. (1) The proposed method represents the current operating state of the motor driving system as a time-series model in the CCS-type. Compared with the conventional MF-PCC strategy using ultra-local, it formulates the system as a group of discrete-time transfer functions. (2) The obtained current quality, dynamics, and system noises are improved due to the good accuracy of the time-series model. (3) Based on the designed estimation algorithm and sampled data, the time-series model includes multiple time-varying physical parameters of the system. (4) The orders of the model should be selected comprehensively, considering the permitted calculation time and performances to prevent overrun error or insufficient accuracy.
魏尧, 柯栋梁, 黄东晓, 汪凤翔, 康劲松. 基于时间序列的永磁同步电机连续控制集无模型预测电流控制[J]. 电工技术学报, 2023, 38(22): 6027-6038.
Wei Yao1, Ke Dongliang1, Huang Dongxiao1, Wang Fengxiang1, Kang Jinsong2. A Continuous-Control-Set Type Model-Free Predictive Current Control Based on Time-Series for Permanent Magnet Synchronous Motor Drives. Transactions of China Electrotechnical Society, 2023, 38(22): 6027-6038.
[1] 赵剑飞, 花敏琪, 刘廷章. 电动车用多盘式永磁同步电机协同优化与容错控制方法[J]. 中国电机工程学报, 2019, 39(2): 386-394, 636. Zhao Jianfei, Hua Minqi, Liu Tingzhang.Cooperative optimization and fault-tolerant control method of multi-disk permanent magnet synchronous motor for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(2): 386-394, 636. [2] 李祥林, 薛志伟, 阎学雨, 等. 基于电压矢量快速筛选的永磁同步电机三矢量模型预测转矩控制[J]. 电工技术学报, 2022, 37(7): 1666-1678. Li Xianglin, Xue Zhiwei, Yan Xueyu, et al.Voltage vector rapid screening-based three-vector model predictive torque control for permanent magnet synchronous motor[J]. Transactions of China Elec- trotechnical Society, 2022, 37(7): 1666-1678. [3] 李家祥, 汪凤翔, 柯栋梁, 等. 基于粒子群算法的永磁同步电机模型预测控制权重系数设计[J]. 电工技术学报, 2021, 36(1): 50-59, 76. Li Jiaxiang, Wang Fengxiang, Ke Dongliang, et al.Weighting factors design of model predictive control for permanent magnet synchronous machine using particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 50-59, 76. [4] 魏尧, 魏艳君, 马云飞, 等. 永磁同步电机转子位置的级联预测控制[J]. 电工技术学报, 2019, 34(1): 41-48. Wei Yao, Wei Yanjun, Ma Yunfei, et al.Cascade predictive control for rotor position of permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 41-48. [5] 王治国, 郑泽东, 李永东, 等. 三相异步电机电流多步预测控制方法[J]. 电工技术学报, 2018, 33(9): 1975-1984. Wang Zhiguo, Zheng Zedong, Li Yongdong, et al.Predictive current control for three phase induction machine using multi-steps prediction horizon[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1975-1984. [6] 王安鹏, 黄旭珍, 李立毅, 等. 永磁直线同步电机的变权重系数多步模型预测电流控制方法[J]. 中国电机工程学报, 2022, 42(22): 8332-8343. Wang Anpeng, Huang Xuzhen, Li Liyi, et al.Variable weight coefficient multi-step model predictive current control method for permanent magnet linear syn- chronous motor[J]. Proceedings of the CSEE, 2022, 42(22): 8332-8343. [7] Wei Yao, Wei Yanjun, Gao Yang, et al.A variable prediction horizon self-tuning method for nonlinear model predictive speed control on PMSM rotor position system[J]. IEEE Access, 2021, 9: 78812-78822. [8] Wang Fengxiang, Ke Dongliang, Yu Xinhong, et al.Enhanced predictive model based deadbeat control for PMSM drives using exponential extended state observer[J]. IEEE Transactions on Industrial Elec- tronics, 2022, 69(3): 2357-2369. [9] 贾成禹, 王旭东, 周凯. 基于扰动观测器的PMSM模型预测电流控制[J]. 电力电子技术, 2019, 53(10): 23-25, 95. Jia Chengyu, Wang Xudong, Zhou Kai.Model predictive current control of PMSM based on dis- turbance observer[J]. Power Electronics, 2019, 53(10): 23-25, 95. [10] Mousavi M S, Davari S A, Nekoukar V, et al.A robust torque and flux prediction model by a modified disturbance rejection method for finite-set model- predictive control of induction motor[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9322-9333. [11] 余晨辉, 汪凤翔, 林贵应. 基于在线扰动补偿的三电平PWM整流器级联式无差拍控制策略[J]. 电工技术学报, 2022, 37(4): 954-963. Yu Chenhui, Wang Fengxiang, Lin Guiying.Cascaded deadbeat control strategy with online disturbance compensation for three-level PWM rectifier[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 954-963. [12] 肖雄, 王浩丞, 武玉娟, 等. 基于双滑模估计的主从结构共轴双电机模型预测直接转矩控制无速度传感器控制策略[J]. 电工技术学报, 2021, 36(5): 1014-1026. Xiao Xiong, Wang Haocheng, Wu Yujuan, et al.Coaxial dual motor with master-slave structure model-predictive direct torque control speed sensor- less control strategy based on double sliding mode estimation[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1014-1026. [13] 柯栋梁, 汪凤翔, 李家祥. 基于自适应高增益观测器的永磁同步电机预测电流控制方法[J]. 中国电机工程学报, 2021, 41(2): 728-738. Ke Dongliang, Wang Fengxiang, Li Jiaxiang.Predictive current control of permanent magnet synchronous motor based on an adaptive high-gain observer[J]. Proceedings of the CSEE, 2021, 41(2): 728-738. [14] Hou Zhongsheng, Lei Ting.Constrained model free adaptive predictive perimeter control and route guidance for multi-region urban traffic systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 912-924. [15] Heydari R, Young H, Flores-Bahamonde F, et al.Model-free predictive control of grid-forming inverters with LCL filters[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9200-9211. [16] 史婷娜, 李聪, 姜国凯, 等. 基于无模型预测控制的无刷直流电机换相转矩波动抑制策略[J]. 电工技术学报, 2016, 31(15): 54-61. Shi Tingna, Li Cong, Jiang Guokai, et al.Model free predictive control method to suppress commutation torque ripple for brushless DC motor[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 54-61. [17] 张永昌, 屈祈延, 杨海涛. 基于空间矢量调制的Vienna整流器无模型预测电流控制[J]. 电工技术学报, 2022, 37(21): 5541-5547. Zhang Yongchang, Qu Qiyan, Yang Haitao.Model free predictive current control of Vienna rectifier based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5541-5547. [18] 王誉, 侯忠生. 具有外部扰动的PMSM系统的无模型自适应预测控制[J]. 控制理论与应用, 2022, 39(5): 837-846. Wang Yu, Hou Zhongsheng.Model-free adaptive predictive control for PMSM systems with external disturbance[J]. Control Theory & Applications, 2022, 39(5): 837-846. [19] Wang Fengxiang, Wei Yao, Young H, et al.Continuous-control-set model-free predictive funda- mental current control for PMSM system[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 5928-5938. [20] Zhang Yongchang, Jin Jialin, Huang Lanlan.Model- free predictive current control of PMSM drives based on extended state observer using ultralocal model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003. [21] 赵凯辉, 周瑞睿, 冷傲杰, 等. 一种永磁同步电机的有限集无模型容错预测控制算法[J]. 电工技术学报, 2021, 36(1): 27-38. Zhao Kaihui, Zhou Ruirui, Leng Aojie, et al.Finite control set model-free fault-tolerant predictive control for permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(1): 27-38. [22] Wang Daming, Shen Z J, Yin Xin, et al.Model predictive control using artificial neural network for power converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3689-3699. [23] Mesai A H, Jlassi I, Marques C A J, et al. Model-free predictive current control of synchronous reluctance motors based on a recurrent neural network[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 10984-10992. [24] Mousavi M S, Davari S A, Nekoukar V, et al.Integral sliding mode observer-based ultralocal model for finite-set model predictive current control of indu- ction motor[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 2912-2922. [25] Babayomi O, Zhang Zhenbin.Model-free predictive control of power converters with cascade-parallel extended state observers[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10215-10226. [26] Nelles O.Nonlinear system identification[M]. Kronberg: Springer-Verlag, 2001. [27] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18384.1-2015 电动汽车安全要求第1部分: 车载可充电储能系统(REESS)[S]. 北京: 中国标准出版社, 2015. [28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18384.2-2015 电动汽车安全要求第2部分: 操作安全和故障防护[S]. 北京: 中国标准出版社, 2015.