[1] Kang Chongqing, Chen Xinyu, Xu Qianyao, et al.Balance of power: toward a more environmentally friendly, efficient, and effective integration of energy systems in China[J]. IEEE Power and Energy Magazine, 2013, 11(5): 56-64.
[2] 国家能源局2021年一季度网上新闻发布会文字实录[EB/OL]. [2021-01-30]. http://www.nea.gov.cn/2021-01/30/c_139708580.htm.
[3] Blarke M B.Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration[J]. Applied Energy, 2012, 91(1): 349-365.
[4] Papaefthymiou G, Hasche B, Nabe C.Potential of heat pumps for demand side management and wind power integration in the German electricity market[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 636-642.
[5] Mollenhauer E, Christidis A, Tsatsaronis G.Increasing the flexibility of combined heat and power plants with heat pumps and thermal energy storage[J]. Journal of Energy Resources Technology, 2018, 140(2): 020907.
[6] Manson J R, Wallis S G.An accurate numerical algorithm for advective transport[J]. Communications in Numerical Methods in Engineering, 1995, 11(12): 1039-1045.
[7] Benonysson A, Bøhm B, Ravn H F.Operational optimization in a district heating system[J]. Energy Conversion and Management, 1995, 36(5): 297-314.
[8] Liu Xuezhi, Wu Jianzhong, Jenkins N, et al.Combined analysis of electricity and heat networks[J]. Applied Energy, 2016, 162: 1238-1250.
[9] Yang Jingwei, Zhang Ning, Botterud A, et al.On an equivalent representation of the dynamics in district heating networks for combined electricity-heat operation[J]. IEEE Transactions on Power Systems, 2020, 35(1): 560-570.
[10] Zheng Weiye, Hou Yunhe, Li Zhigang.A dynamic equivalent model for district heating networks: formulation, existence and application in distributed electricity-heat operation[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 2685-2695.
[11] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570.
Zhang Yizhi, Wang Xiaojun, He Jinghan, et al.Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570.
[12] 张超, 冯忠楠, 邓少平, 等. 考虑电热混合储能的多能互补协同削峰填谷策略[J]. 电工技术学报, 2021, 36(增刊1): 191-199.
Zhang Chao, Feng Zhongnan, Deng Shaoping, et al.Multi-energy complementary collaborative peak-load shifting strategy based on electro-thermal hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 191-199.
[13] Li Zhigang, Wu Wenchuan, Shahidehpour M, et al.Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 12-22.
[14] Huang Shaojun, Tang Weichu, Wu Qiuwei, et al.Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming[J]. Energy, 2019, 179: 464-474.
[15] Conejo A J, Castillo E, Minguez R, et al.Decomposition techniques in mathematical programming: engineering and science applications[M]. Berlin: Springer, 2006.
[16] Lin Chenhui, Wu Wenchuan, Zhang Boming, et al.Decentralized solution for combined heat and power dispatch through benders decomposition[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1361-1372.
[17] Lu Shuai, Gu Wei, Zhou Suyang, et al.High-resolution modeling and decentralized dispatch of heat and electricity integrated energy system[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1451-1463.
[18] Huang Jinbo, Li Zhigang, Wu Qinhua.Coordinated dispatch of electric power and district heating networks: a decentralized solution using optimality condition decomposition[J]. Applied Energy, 2017, 206: 1508-1522.
[19] Xue Yixun, Li Zhengshuo, Lin Chenhui, et al.Coordinated dispatch of integrated electric and district heating systems using heterogeneous decomposition[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1495-1507.
[20] 张雨曼, 刘学智, 严正, 等. 光伏-储能-热电联产综合能源系统分解协调优化运行研究[J]. 电工技术学报, 2020, 35(11): 2372-2386.
Zhang Yuman, Liu Xuezhi, Yan Zheng, et al.Decomposition-coordination based optimization for PV-BESS-CHP integrated energy systems[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2372-2386.
[21] Myerson R B.Incentive compatibility and the bargaining problem[J]. Econometrica, 1979, 47(1): 61.
[22] Chen Yue, Wei Wei, Liu Feng, et al.Energy trading and market equilibrium in integrated heat-power distribution systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4080-4094.
[23] Cao Yang, Wei Wei, Wu Lei, et al.Decentralized operation of interdependent power distribution network and district heating network: a market-driven approach[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5374-5385.
[24] Yang Jingwei, Botterud A, Zhang Ning, et al.A cost-sharing approach for decentralized electricity-heat operation with renewables[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1838-1847.
[25] 王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926-1934.
Wang Yun, Xie Haipeng, Sun Xiaotian, et al.Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1926-1934.
[26] Nash J F.The bargaining problem[J]. Econometrica, 1950, 18(2): 155.
[27] 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(增刊1): 133-144.
Hou Hui, Liu Peng, Huang Liang, et al.Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144.
[28] 丁煜蓉, 陈红坤, 吴军, 等. 计及综合能效的电-气- 热综合能源系统多目标优化调度[J]. 电力系统自动化, 2021, 45(2): 64-73.
Ding Yurong, Chen Hongkun, Wu Jun, et al.Multi-objective optimal dispatch of electricity-gas-heat integrated energy system considering comprehensive energy efficiency[J]. Automation of Electric Power Systems, 2021, 45(2): 64-73.
[29] 武梦景, 万灿, 宋永华, 等. 含多能微网群的区域电热综合能源系统分层自治优化调度[J]. 电力系统自动化, 2021, 45(12): 20-29.
Wu Mengjing, Wan Can, Song Yonghua, et al.Hierarchical autonomous optimal dispatching of district integrated heating and power system with multi-energy microgrids[J]. Automation of Electric Power Systems, 2021, 45(12): 20-29.
[30] 李志刚. 消纳大规模风电的互联电网多维协同优化调度方法研究[M]. 北京: 清华大学出版社, 2021.
[31] 贺平, 孙刚, 王飞, 等. 供热工程[M]. 4版. 北京: 中国建筑工业出版社, 2009.
[32] Zhao Hongping.Analysis, modelling, and operational optimization of district heating systems[D]. Denmark: Technical University of Denmark, 1995.
[33] Chen Binbin, Wu Wenchuan, Sun Hongbin.Coordinated heat and power dispatch considering mutual benefit and mutual trust: a multi-party perspective[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 251-264.
[34] Zhu Jizhong.Optimization of power system operation[M]. Hoboken: John Wiley & Sons, Inc., 2009.
[35] Sadeghian H R, Ardehali M M.A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition[J]. Energy, 2016, 102: 10-23.
[36] Rahmaniani R, Crainic T G, Gendreau M, et al.The Benders decomposition algorithm: a literature review[J]. European Journal of Operational Research, 2017, 259(3): 801-817.
[37] Abdolmohammadi H R, Kazemi A.A Benders decomposition approach for a combined heat and power economic dispatch[J]. Energy Conversion and Management, 2013, 71: 21-31.
[38] 梅生伟, 刘锋, 魏韡. 工程博弈论基础及电力系统应用[M]. 北京: 科学出版社, 2016.
[39] 张维迎. 博弈与社会[M]. 北京: 北京大学出版社, 2013.
[40] Supplementary materials for case studies[DB/OL]. https://figshare.com/articles/dataset/Test_data_for_combined_heat_and_power_dispatch_xls/2036343. |