Abstract:To resolve the low efficiency of traditional atmospheric emission amount control in reducing air pollution of power generation activities, this paper proposed a distributed optimizing algorithm to find the optimal energy flow in the integrated power and gas system with consideration of the spatiotemporal diffusion of atmospheric pollutants as well as the difference of pollution tolerance between regions. Meanwhile, a method describing the direction of pipeline airflow in natural gas networks without integer variables was also proposed. The diffusion process of atmospheric pollutants was depicted by the Gaussian puff model, with which an evaluation index of air pollution of power generation activities and several additional environmental constraints were established. The Weymouth airflow equation with absolute value was replaced by several equivalent constraints with only square terms of variables, so that the model can be convexified by a penalty convex-concave procedure. Finally, the generalized Benders decomposition was employed to break the problem into a main-problem of power network and a sub-problem of natural gas network which can be calculated independently, so that synergetic optimization can be performed with a little information exchanged between the two networks. Simulation verified the effectiveness of the proposed model in reducing air pollution, as well as the accuracy and superiority of the proposed airflow direction handling method.
[1] Geng Zhaowei, Chen Qixin, Xia Qing, et al.Environmental generation scheduling considering air pollution control technologies and weather effects[J]. IEEE Transactions on Power Systems, 2017, 32(1): 127-136. [2] 王艳红. 天然气发电产业低碳发展的机制与对策研究[J]. 生态经济, 2013(1): 114-118. Wang Yanhong.Study on low-carbon development mechanism and countermeasures of natural gas power generation[J]. Ecological Economy, 2013(1): 114-118. [3] Qiu Jing, Dong Zhaoyang, Zhao Junhua, et al.Low carbon oriented expansion planning of integrated gas and power systems[J]. IEEE Transactions on Power Systems, 2015, 30(2): 1035-1046. [4] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [5] 杨家然, 王兴成, 隋林涛, 等. 采用混合智能算法的含风电电力系统多目标优化调度[J]. 电力系统保护与控制, 2017, 45(11): 21-27. Yang Jiaran, Wang Xingcheng, Sui Lintao, et al.Multi-objective optimal scheduling of wind integrated power systems with hybrid intelligent algorithm[J]. Power System Protection and Control, 2017, 45(11): 21-27. [6] 刘文学, 梁军, 贠志皓, 等. 考虑节能减排的多目标模糊机会约束动态经济调度[J]. 电工技术学报, 2016, 31(1): 62-70. Liu Wenxue, Liang Jun, Yun Zhihao, et al.Multi-objective fuzzy chance constrained dynamic economic dispatch considering energy saving and emission reduction[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 62-70. [7] 余涛, 陈艺璇, 张孝顺. 考虑多种污染物时空分布的电力系统高维多目标优化调度策略[J]. 中国科学: 技术科学, 2018, 48(7): 755-772. Yu Tao, Chen Yixuan, Zhang Xiaoshun.Many-objective optimization dispatching strategy for power system considering the temporal and spatial distribution of different pollutants[J]. Scientia Sinica: Technologica, 2018, 48(7): 755-772. [8] Kou Y N, Zheng J H, Li Zhigang, et al.Many-objective optimization for coordinated operation of integrated electricity and gas network[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(3): 350-363. [9] 卫志农, 张思德, 孙国强, 等. 计及电转气的电-气互联综合能源系统削峰填谷研究[J]. 中国电机工程学报, 2017, 37(16): 4601-4609. Wei Zhinong, Zhang Side, Sun Guoqiang, et al.Power-to-gas considered peak load shifting research for integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2017, 37(16): 4601-4609. [10] Wen Yunfeng, Qu Xiaobin, Li Wenyuan, et al.Synergistic operation of electricity and natural gas networks via ADMM[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4555-4565. [11] He Yubin, Yan Mingyu, Shahidehpour M, et al.Decentralized optimization of multi-area electricity-natural gas flows based on cone reformulation[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4531-4542. [12] He Chuan, Wu Lei, Liu Tianqi, et al.Robust co-optimization scheduling of electricity and natural gas systems via ADMM[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 658-670. [13] Wang Cheng, Wei Wei, Wang Jianhui, et al.Convex optimization based distributed optimal gas-power flow calculation[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1145-1156. [14] 郑海艳. 机组组合基于Benders分解与割平面的方法及约束优化SQP算法研究[D]. 南宁: 广西大学, 2015. [15] 赵娟, 申旭辉, 吴丽华, 等. 结合直流潮流模型的电网断面热稳定极限快速评估方法[J]. 电力系统保护与控制, 2015, 43(3): 97-101. Zhao Juan, Shen Xuhui, Wu Lihua, et al.Fast evaluation method on thermal stability limit of power grid cross-section with DC power flow model[J]. Power System Protection and Control, 2015, 43(3): 97-101. [16] 祝锦舟, 张焰, 王赛一, 等. 基于传输点容量模型的发输电系统可靠性评估[J]. 电工技术学报, 2018, 33(1): 92-103. Zhu Jinzhou, Zhang Yan, Wang Saiyi, et al.A method for composite power system reliability evaluation based on delivery point capability model[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 92-103. [17] 牛进苍, 许奕斌, 辜超, 等. 基于拓扑建模和关联集分解的电网设备风险评估技术[J]. 电力系统保护与控制, 2018, 46(13): 155-160. Niu Jincang, Xu Yibin, Gu Chao, et al.Risk assessment technique for power equipment based on topology modeling and association sets decomposition[J]. Power System Protection and Control, 2018, 46(13): 155-160. [18] Yang Jingwei, Zhang Ning, Kang Chongqing, et al.Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2087-2097. [19] 赵霞, 杨仑, 瞿小斌, 等. 电-气综合能源系统能流计算的改进方法[J]. 电工技术学报, 2018, 33(3): 467-477. Zhao Xia, Yang Lun, Qu Xiaobin, et al.An improved energy flow calculation method for integrated electricity and natural gas system[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 467-477. [20] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. Luo Yi, Shao Zhouce, Zhang Lei, et al.Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467. [21] Liang Yingzong, Hui Chiwai.Convexification for natural gas transmission networks optimization[J]. Energy, 2018, 158: 1001-1016. [22] Chu K C, Jamshidi M, Levitan R E.An approach to on-line power dispatch with ambient air pollution constraints[J]. IEEE Transactions on Automatic Control, 1977, 22(3): 385-396. [23] 蒋维楣. 空气污染气象学教程[M]. 北京: 气象出版社, 1993. [24] Correa-Posada C M, Sanchez-Martin P. Security-constrained optimal power and natural-gas flow[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1780-1787. [25] 张儒峰, 姜涛, 李国庆, 等. 考虑电转气消纳风电的电-气综合能源系统双层优化调度[J]. 中国电机工程学报, 2018, 38(19): 5668-5678. Zhang Rufeng, Jiang Tao, Li Guoqing, et al.Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommodation[J]. Proceedings of the CSEE, 2018, 38(19): 5668-5678. [26] 李春鞠, 顾国维. 温室效应与二氧化碳的控制[J]. 环境保护科学, 2000, 26(2): 13-15. Li Chunju, Gu Guowei.Green house effect and control technology on carbon dixide[J]. Environmental Protection Science, 2000, 26(2): 13-15. [27] Lipp T, Boyd S.Variations and extension of the convex-concave procedure[J]. Optimization and Engineering, 2016, 17(2): 263-287. [28] 徐彪, 尹项根, 张哲, 等. 电网故障诊断的分阶段解析模型[J]. 电工技术学报, 2018, 33(17): 4113-4122. Xu Biao, Yin Xianggen, Zhang Zhe, et al.A staged analytical model for power system fault diagnosis[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4113-4122. [29] Boyd S, Parikh N, Chu E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3(1): 1-122. [30] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570. Zhang Yizhi, Wang Xiaojun, He Jinghan, et al.Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570.