Research on Electromagnetic Pulse Welding Conditions of Aluminum Core Wire and Copper Connecting Tube of Power Cable
Lu Zhijian1, Chang Jiang2, Bai Xiaobin2, Lu Haohe1, Yang Lanjun1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710000 China; 2. State Grid Shaanxi Electric Power Co. Ltd Baoji Power Supply Company Baoji 721000 China
Abstract:The cable connector is generally used to make hydraulic clamp pressure. Limited by the shape of the mold, the cable joints are not crimped tightly. It will produce the spring between the connectors and cable cores, forming a gap. It can cause problems such as excessive contact resistance of the cable joints, partial discharge damage to insulation, and easy pull-off. Electromagnetic welding technology can replace the traditional hydraulic clamp technique and transition clamp, lifting the mechanical properties of the cable joints, electrical performance, and reliability. Therefore, this paper conducted simulation and experimental research on electromagnetic pulse welding of 70 mm2 aluminum stranded and copper connecting tubes. Firstly, the magnetic field distribution in the working area of the field shaper was measured by the magneto-optical effect method and compared with the simulation results. Secondly, the deformation process of the outer tube was analyzed by simulation, high-speed photography, and theoretical derivation. The electromagnetic welding conditions of the cable joints were obtained. Finally, the contact resistance, tensile force, and micro-interface were tested for the electromagnetic welding joints of the cable. The magnetic field measurement results show that the magnetic field on the central axis of the field shaper is roughly in a “bell-shaped” distribution, the magnetic field is the largest at the working area, and the magnetic field decreases rapidly at the position far from the working area. The distribution is relatively even at different radial positions of the field shaper working area. The distribution of the measured axial magnetic field is similar to the simulation, and the measured magnetic field in the center of the working area is about 3.9% smaller than the simulation. The deformation process of the outer tube is simulated, measured, and theoretically deduced. The acceleration stage velocity curves of the outer tube obtained from the theoretical deduction are similar to the simulation and the measured velocity waveforms. The theoretically calculated collision speed and the measured value are within 10%, which has an approximately linear relationship with the charging voltages. The resistance of the cable joints decreases with the increase of the charging voltages. When the charging voltage is 10 kV, the resistance of the joint is 35.12 μΩ, which has met the requirements of the national standard. When the charging voltage is higher than 12 kV, the resistance of the cable joints is 25.2 μΩ, which is only 60.8% of the required value. The strength of the cable joints increases with the increase of the charging voltages. When the charging voltage is 10 kV, the tensile strength of the cable joints meets the requirements of the national standard. When the charging voltage is higher than 12 kV, the aluminum stranded wire body breaks, indicating that the strength of the electromagnetic welding joints is higher than the strength of the base metal. However, when the charging voltage exceeds 16 kV, the aluminum-stranded wire is seriously damageddue to the high-speed collision between the copper outer tube and the aluminum stranded wire. Consequently, the mechanical properties of the cable joints are sharply reduced. The test results of the micro-interface of the cable joints show that when the charging voltage is 12 kV, a continuous wave-like interface is observed on the section of the welded joints. The wave peak is approximately 20 μm, and the wavelength is around 70 μm, which has achieved the welding effect. The outer tube’s measured and calculated collision speeds are 128.9 m/s and 134.7 m/s, and the deviations from the lower limit collision speed are 5.6% and 10.3%, respectively. Therefore, the discharge energy value required for two different materials to reach the welding conditions can be well predicted, providingan effective reference for future electromagnetic welding equipment design.
路志建, 常江, 白晓斌, 陆豪赫, 杨兰均. 电力电缆铝芯线与铜连接管的电磁焊接条件研究[J]. 电工技术学报, 2023, 38(20): 5620-5633.
Lu Zhijian, Chang Jiang, Bai Xiaobin, Lu Haohe, Yang Lanjun. Research on Electromagnetic Pulse Welding Conditions of Aluminum Core Wire and Copper Connecting Tube of Power Cable. Transactions of China Electrotechnical Society, 2023, 38(20): 5620-5633.
[1] 熊奇, 周丽君, 杨猛, 等. 单脉冲电磁成形中洛伦兹力在时间上的双向竞争关系及其对成形效果的影响[J]. 电工技术学报, 2022, 37(14): 3453-3463. Xiong Qi, Zhou Lijun, Yang Meng, et al.The two- way competitive relationship of Lorentz force in time in single pulse electromagnetic forming and its influence on forming effect[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3453-3463. [2] 熊奇, 杨猛, 周丽君, 等. 双线圈吸引式板件电磁成形过程中的涡流竞争问题[J]. 电工技术学报, 2021, 36(10): 2007-2017. Xiong Qi, Yang Meng, Zhou Lijun, et al.Eddy currents competition in electromagnetic forming process of plates by double-coil attraction[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(10): 2007-2017. [3] 王紫叶, 杨猛, 熊奇. 电磁成形过程中线圈温升及结构优化[J]. 电工技术学报, 2021, 36(18): 3891-3901. Wang Ziye, Yang Meng, Xiong Qi.Coil temperature rise and structure optimization in electromagnetic forming[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3891-3901. [4] Pysk V, Risch D, Kinsey B L, et al.Electromagnetic forming-a review[J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829. [5] Watanabe M, Kumai S.Interfacial morphology of magnetic pulse welded aluminum/aluminum and copper/copper lap joints[J]. Materials Transactions, 2009, 50(2): 286-292. [6] 邓方雄. 基于电磁脉冲技术的金属板件高速碰撞焊接方法与实验研究[D]. 武汉: 华中科技大学, 2019. [7] Yu Haiping.Magnetic pulse joining of aluminum alloy-carbon steel tubes[J]. Transactions of Non- ferrous Metals Society of China, 2012, 22: s548-s552. [8] Shribman V, Stren A.Take advantage of the new magnetic pulse welding process[J]. Welding Review, 2001, 56(2-3): 14-16. [9] 尚康良, 曹均正, 赵志斌, 等. 320kV XLPE高压直流电缆接头附件仿真分析和结构优化设计[J]. 中国电机工程学报, 2016, 36(7): 2018-2024. Shang Kangliang, Cao Junzheng, Zhao Zhibin, et al.Simulation analysis and design optimization of 320kV HVDC cable joint[J]. Proceedings of the CSEE, 2016, 36(7): 2018-2024. [10] 常文治, 李成榕, 苏錡, 等. 电缆接头尖刺缺陷局部放电发展过程的研究[J]. 中国电机工程学报, 2013, 33(7): 192-201, 1. Chang Wenzhi, Li Chengrong, Su Qi, et al.Study on development of partial discharges at the defect caused by a needle damage to a cable joint[J]. Proceedings of the CSEE, 2013, 33(7): 192-201, 1. [11] 龚勇, 秦钢林. 电磁脉冲压接技术在电气及自动化工程领域的应用[J]. 自动化与仪器仪表, 2014(9): 85-87, 91. Gong Yong, Qin Ganglin.Electromagnetic pulse crimping technology in the field of electrical and automation engineering[J]. Automation & Instru- mentation, 2014(9): 85-87, 91. [12] 程鹏. 电缆接头内部缺陷下的电磁—热—力特性及表征方法研究[D]. 重庆: 重庆大学, 2016. [13] Schoerling D, Heck S, Scheuerlein C, et al.Electrical resistance of Nb3Sn/Cu splices produced by electro- magnetic pulse technology and soft soldering[J]. Superconductor Science and Technology, 2012, 25(2): 025006. [14] Kore S D, Date P P, Kulkarni S V, et al.Electro- magnetic impact welding of aluminum to stainless steel sheets[J]. Journal of Materials Processing Tech- nology, 2008, 208(1/2/3): 486-493. [15] Brown W, Bandas J, Olson N.Pulsed magnetic welding of breeder reactor fuel pin end closures[J]. Welding Journal, 1978, 57(6): 22-26 [16] Wang P Q, Chen D L, Ran Y, et al.Electromagnetic pulse welding of Al/Cu dissimilar materials: Micro- structure and tensile properties[J]. Materials Science and Engineering: A, 2020, 792: 139842. [17] 尹成凯. 3A21铝合金和20#钢管-管磁脉冲焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [18] 李成祥, 石鑫, 周言, 等. 针对H型线圈的电磁脉冲焊接仿真及线圈截面结构影响分析[J]. 电工技术学报, 2021, 36(23): 4992-5001. Li Chengxiang, Shi Xin, Zhou Yan, et al.Electro- magnetic pulse welding simulation for H-type coil and analysis of the influence of coil cross-sectional structure[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4992-5001. [19] 李成祥, 杜建, 周言, 等. 电磁脉冲板件焊接设备研制及镁/铝合金板焊接实验研究[J]. 电工技术学报, 2021, 36(10): 2018-2027. Li Chengxiang, Du Jian, Zhou Yan, et al.Deve- lopment of electromagnetic pulse welding equipment for plates and experimental research on magnesium/ aluminum alloy welding[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2018-2027. [20] Elsen A, Ludwig M, Schaefer R, et al.Fundamentals of EMPT-welding[C]//4th International Conference on High Speed Forming. United States, Ohio: I2FG, 2010: 117-126. [21] Shim J Y, Kim I S, Lee K J, et al.Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding[J]. Metals and Materials International, 2011, 17(6): 957-961. [22] Nassiri A, Chini G, Kinsey B.Spatial stability analysis of emergent wavy interfacial patterns in magnetic pulsed welding[J]. CIRP Annals, 2014, 63(1): 245-248. [23] Robinson J L.The mechanics of wave formation in impact welding[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1975, 31(3): 587-597. [24] Ben-Artzy A, Stern A, Frage N, et al.Wave formation mechanism in magnetic pulse welding[J]. Inter national Journal of Impact Engineering, 2010, 37(4): 397-404. [25] Abrahamson G R.Permanent periodic surface defor- mations due to a traveling jet[J]. Journal of Applied Mechanics, 1961, 28(4): 519-528. [26] Bahrani T Black, Crossland B.The mechanics of wave formation in explosive welding[J]. Proceedings of the Royal Society of London Series A Mathe- matical and Physical Sciences, 1967, 296(1445): 123-136. [27] 徐志丹. 3A21铝合金-20#钢管件磁脉冲焊接数值模拟与工艺试验[D]. 哈尔滨: 哈尔滨工业大学, 2013. [28] Lorenz A, Lueg-Althoff, Bellmann, et al. Workpiece positioning during magnetic pulse welding of aluminum-steel joints[J]. Welding Journal, 2016, 95(3): 101S-109S. [29] Strand O T, Berzins L V, Goosman D R, et al.Velocimetry using heterodyne techniques[C]//SPIE Proceedings of 26th International Congress on High-Speed Photography and Photonics, Alexandria, VA, 2005: 206-214. [30] Joern, Lueg-Althoff.Influence of the flyer kinetics on magnetic pulse welding of tubes[J]. Journal of Materials Processing Technology, 2018, 262: 189-203. [31] Jäger A, Tekkaya A.Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion[C]// 5th International Conference on High Speed Forming, Germany, Dortmund: I2FG, 2012: 13-22. [32] Li Chengxiang, Zhou Yan, Wang Xianmin, et al.Influence of discharge current frequency on electro- magnetic pulse welding[J]. Journal of Manufacturing Processes, 2020, 57: 509-518. [33] 周纹霆, 董守龙, 王晓雨, 等. 电磁脉冲焊接电缆接头的装置的研制及测试[J]. 电工技术学报, 2019, 34(11): 2424-2434. Zhou Wenting, Dong Shoulong, Wang Xiaoyu, et al.Development and test of electromagnetic pulse welding cable joint device[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2424-2434. [34] Rajak A K, Sachin D Kore.Experimental investi- gation of aluminium-copper wire crimping with electromagnetic process: its advantages over con- ventional process[J]. Journal of Manufacturing Pro- cesses, 2017, 26: 57-66. [35] 刘刚, 韩佳一, 丁健, 等. 高压电力电缆导体连接管的电磁脉冲成形研究[J]. 高电压技术, 2021, 47(3): 1109-1118. Liu Gang, Han Jiayi, Ding Jian, et al.Research on electromagnetic pulse forming of conductor conne- cting pipe of high voltage power cable[J]. High Voltage Engineering, 2021, 47(3): 1109-1118. [36] 李成祥, 杜建, 陈丹, 等. 基于电磁脉冲成形技术的电缆接头压接装置的研制及实验研究[J]. 高电压技术, 2020, 46(8): 2941-2950. Li Chengxiang, Du Jian, Chen Dan, et al.Deve- lopment and experimental study of cable joint pressure connecting device based on the electro- magnetic pulse forming technology[J]. High Voltage Engineering, 2020, 46(8): 2941-2950. [37] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12527—2008 额定电压1kV及以下架空绝缘电缆[S]. 北京: 中国标准出版社, 2009. [38] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14315-2008 电力电缆导体用压接型铜、铝接线端子和连接管[S]. 北京: 中国标准出版社, 2009. [39] 张永鹏, 杨兰均, 路志建, 等. 宽工作系数大容量四电极紫外预电离气体开关[J]. 高电压技术, 2021, 47(12): 4368-4376. Zhang Yongpeng, Yang Lanjun, Lu Zhijian, et al.Four-electrode UV pre-ionization gas switch with wide operating coefficient and large capacity[J]. High Voltage Engineering, 2021, 47(12): 4368-4376. [40] 杨兰均, 马江波, 黄东, 等. 高压合成回路用放电开关等离子体触发装置特性[J]. 高电压技术, 2019, 45(11): 3474-3480. Yang Lanjun, Ma Jiangbo, Huang Dong, et al.Characteristics of the plasma triggering device applied to discharge switch for HV synthetic circuit[J]. High Voltage Engineering, 2019, 45(11): 3474-3480. [41] Zaitov O, Kolchuzhin V A.Bitter coil design metho- dology for electromagnetic pulse metal processing techniques[J]. Journal of Manufacturing Processes, 2014, 16(4): 551-562. [42] 王士彬, 杜林, 孙才新, 等. 纵向磁场下铁磁流体磁致旋光效应的互易性[J]. 高电压技术, 2010, 36(8): 2028-2034. Wang Shibin, Du Lin, Sun Caixin, et al.Reciprocity property of magneto-optical rotation effect of ferrofluid exposed to the longitudinal magnetic field[J]. High Voltage Engineering, 2010, 36(8): 2028-2034. [43] 刘帅. 平行轨道加速器电磁驱动等离子体特性研究[D]. 西安: 西安交通大学, 2019. [44] 曹亚明, 杨尚磊, 夏明许, 等. 铝-铝电磁脉冲焊接技术及其机理研究[J]. 热加工工艺, 2020, 49(9): 50-53, 58. Cao Yaming, Yang Shanglei, Xia Mingxu, et al.Research on Al-Al electromagnetic pulse welding technology and mechanism[J]. Hot Working Tech- nology, 2020, 49(9): 50-53, 58. [45] 敖文刚, 王歆. 基于双剪统一强度理论的厚壁圆筒的弹塑性分析[J]. 重庆工商大学学报(自然科学版), 2010, 27(6): 629-632. Ao Wengang, Wang Xin.Application of unified strength theory in the analysis of thick-walled tube’s elastoplasticity[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2010, 27(6): 629-632.