A Series 36-Pulse Rectifier Operating in Low Harmonic State Based on Hybrid Voltage Harmonic Injection at DC Side
Wang Ying1,2, Wang Yalan1, Chen Xiaoqiang1,2, Chen Tao3, Mu Xiuqing1
1. School of Automation and Electrical Engineering Lanzhou Jiaotong University Lanzhou 730070 China; 2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education Lanzhou Jiaotong University Lanzhou 730070 China; 3. School of Electrical Engineering Southeast University Nanjing 210096 China
Abstract:High-power multi-pulse rectifiers are often used in HVDC, adjustable speed motors, arc furnaces, electric vehicle charging modules, aircraft power supply, radar power supply, and marine power supply, but a large number of nonlinear harmonic source devices cause serious harmonic pollution to the public power grid. The traditional 12-pulse rectifier has the advantages of a simple structure and strong robustness. However, a large number of harmonics exist at the grid and DC sides, which needs to meet the relevant applicable industry harmonics standards. It often needs to be improved with a harmonic suppression scheme to meet the requirements of different industrial occasions. Therefore, considering the characteristics of passive and active harmonic suppression methods, a low harmonic series 36-pulse rectifier based on DC side hybrid pulse multiplication technology is proposed, which optimizes system structure, improves device utilization, enhances system stability, and reduces power distortion. By setting one additional hybrid voltage harmonic injection circuit (HVHIC) and capacitors, AC and DC power quality can be improved. Firstly, the working principle of the rectifier with HVHIC is analyzed based on the proposed topology, and the formation of the input phase voltage 36-step wave at AC side is revealed. Considering the diode voltage drop, the theoretical values of the AC input voltage step wave are derived. Secondly, with the aim of the lowest voltage distortion at AC side, the IGBT turn-on angle and the injection transformer turn ratio are calculated. In addition, the corresponding IGBT control circuit is designed based on the operating mechanism of the rectifier and the theoretical value of the optimal IGBT on-angle. Then, considering the filter inductances at the source side, the voltage and current distortion characteristics of the rectifier at AC and DC sides are analyzed. Combined with the IGBT state of high failure rate, the harmonic suppression ability of the IGBT state of short and open circuits is analyzed. Finally, Simulink and the Starsim-based hardware-in-the-loop (HIL) platform verify the theoretical analysis results. After comparing different harmonic suppression schemes, the operating characteristics of the proposed rectifier are evaluated, and the reasons for its application in relevant industrial applications are given. The following conclusions can be drawn from the simulation and experimental analysis: (1) The proposed rectifier has input inductance, and the total harmonic distortion (THD) value (3.28 %) of the input current is lower than the input voltage THD value (5.07 %). Therefore, the optimal ratio of the injection transformer is designed to reduce the input voltage THD value, which can improve the power quality at AC side, while the parallel capacitors at DC side make the output waveform stable. Accordingly, the harmonic suppression effect is significant on the whole. It is suitable for high voltage gain and high-power AC-DC situations requiring electrical isolation. (2) The injection transformer in HVHIC has a simpler structure, only two diodes are used, and there is no need to install additional taps, which improves the economy and intensity of the system. (3) The IGBT control circuit uses phase locked loop (PLL) to realize phase synchronization of the gate trigger circuit, and the control process optimizes logic operation. It has the advantages of stability and efficiency. (4) When IGBT fails, the proposed rectifier can operate in the low harmonic state in a completely passive state with strong robustness. However, IGBT short circuit faults should be avoided as far as possible.
王英, 王亚兰, 陈小强, 陈涛, 母秀清. 基于直流侧混合电压谐波注入的低谐波串联36脉波整流器[J]. 电工技术学报, 2023, 38(19): 5288-5303.
Wang Ying, Wang Yalan, Chen Xiaoqiang, Chen Tao, Mu Xiuqing. A Series 36-Pulse Rectifier Operating in Low Harmonic State Based on Hybrid Voltage Harmonic Injection at DC Side. Transactions of China Electrotechnical Society, 2023, 38(19): 5288-5303.
[1] 赵牧天, 葛琼璇, 张波, 等. 高速磁悬浮牵引系统大功率三电平整流器特定谐波消除脉宽调制策略[J]. 电工技术学报, 2022, 37(16): 4180-4192. Zhao Mutian, Ge Qiongxuan, Zhang Bo, et al.Selective harmonic elimination pulse width modu- lation for high power three-level rectifier of high- speed maglev traction system[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4180-4192. [2] 朱艺锋, 赵海龙, 张国澎, 等. 单相五电平整流器滑模模型预测控制[J]. 电工技术学报, 2022, 37(8): 2030-2039. Zhu Yifeng, Zhao Hailong, Zhang Guopeng, et al.Sliding mode model predictive control of single-phase five-level rectifier[J]. Transactions of China Elec- trotechnical Society, 2022, 37(8): 2030-2039. [3] 廉玉欣, 杨世彦, 杨威. 基于非常规平衡电抗器的直流侧谐波抑制方法[J]. 电工技术学报, 2021, 36(18): 3957-3968. Lian Yuxin, Yang Shiyan, Yang Wei.The harmonic reduction method at DC link based on uncon- ventional interphase reactor[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3957-3968. [4] 徐健, 曹鑫, 郝振洋, 等. 基于电网谐波电压前馈的虚拟同步整流器电流谐波抑制方法[J]. 电工技术学报, 2022, 37(8): 2018-2029. Xu Jian, Cao Xin, Hao Zhenyang, et al.A harmonic- current suppression method for virtual synchronous rectifier based on feedforward of grid harmonic voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2018-2029. [5] 李亚辉, 孙媛媛, 李可军, 等. 不平衡供电条件下多脉动整流器的谐波特性分析[J]. 电力系统自动化, 2021, 45(23): 152-161. Li Yahui, Sun Yuanyuan, Li Kejun, et al.Harmonic characteristic analysis of multi-pulse rectifier under unbalanced power supply condition[J]. Automation of Electric Power Systems, 2021, 45(23): 152-161. [6] 肖蕙蕙, 周琛力, 郭强, 等. 用于改善直流链电流纹波的电流源型整流器扇区优化调制策略[J]. 电工技术学报, 2021, 36(24): 5250-5260. Xiao Huihui, Zhou Chenli, Guo Qiang, et al.Opti- mized sector modulation strategy of current source rectifier for DC-link current ripple reduction[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5250-5260. [7] Chen Xiaoqiang, Chen Tao, Wang Ying.Investigation on design of novel step-up 18-pulse auto-transformer rectifier[J]. IEEE Access, 2021, 9: 110639-110647. [8] 孟凡刚, 姜彤, 郭依宁. 基于电力电子变压器的串联型12脉波整流器[J]. 电机与控制学报, 2021, 25(5): 52-59. Meng Fangang, Jiang Tong, Guo Yining.Series- connected 12-pulse rectifier based on power elec- tronic transformer[J]. Electric Machines and Control, 2021, 25(5): 52-59. [9] Singh B, Singh B N, Chandra A, et al.A review of three-phase improved power quality AC-DC con- verters[J]. IEEE Transactions on Industrial Electronics, 2004, 51(3): 641-660. [10] 王景芳, 陈安臣, 姚绪梁, 等. 一种带辅助无源电流形成电路的低谐波多脉波整流器[J]. 中国电机工程学报, 2022, 42(3): 1125-1134. Wang Jingfang, Chen Anchen, Yao Xuliang, et al.Low harmonics multi-pulse rectifier with an auxiliary passive current wave-shaping circuit[J]. Proceedings of the CSEE, 2022, 42(3): 1125-1134. [11] 高蕾, 孟凡刚, 杨威, 等. 多脉波整流器直流侧无源谐波抑制机理研究[J]. 电机与控制学报, 2016, 20(4): 69-77. Gao Lei, Meng Fangang, Yang Wei, et al.Harmonic reduction mechanism at DC link of multi-pulse rectifier[J]. Electric Machines and Control, 2016, 20(4): 69-77. [12] Li Xin, Wang Yang, Xu W.A new filtering scheme for HVDC terminals based on damped high-pass filter[J]. IEEE Transactions on Power Delivery, 2019, 34(5): 2050-2057. [13] Akagi H, Isozaki K.A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 69-77. [14] Li Xin, Xu W, Ding Tianyu.Damped high passive filter-a new filtering scheme for multipulse rectifier systems[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 117-124. [15] Du Qingxiao, Gao Lei, Li Quanhui, et al.Harmonic reduction methods at DC link of series-connected multi-pulse rectifiers: a review[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 3143-3160. [16] Das B, Watson N, Liu Yonghe.DC ripple reinjection: a review[J]. International Journal of Emerging Electric Power Systems, 2011, 12(5): 14-33. [17] 陈涛, 陈小强, 米季炯, 等. 一种直流侧带混合谐波抑制电路的24脉波整流器[J]. 电力系统保护与控制, 2022, 50(8): 149-159. Chen Tao, Chen Xiaoqiang, Mi Jijiong, et al.A 24-pulse rectifier with hybrid harmonic suppression circuit on the DC side[J]. Power System Protection and Control, 2022, 50(8): 149-159. [18] 李萍, 王久和, 李建国, 等. 单向混合整流器无源电流控制[J]. 电工技术学报, 2020, 35(21): 4511-4523. Li Ping, Wang Jiuhe, Li Jianguo, et al.A passivity- based current control strategy for unidirectional hybrid rectifier[J]. Transactions of China Electro- technical Society, 2020, 35(21): 4511-4523. [19] Meng Fangang, Du Qingxiao, Wang Lin, et al.A series-connected 24-pulse rectifier using passive voltage harmonic injection method at DC-link[J]. IEEE Transactions on Power Electronics, 2019, 34(9): 8503-8512. [20] Chivite-Zabalza F J, Forsyth A J, Trainer D R. A simple, passive 24-pulse AC-DC converter with inherent load balancing[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 430-439. [21] 王英, 王亚兰, 陈小强, 等. 一种适用于HVDC带双无源谐波注入的串联型36脉波整流器[J]. 电力系统保护与控制, 2022, 50(18): 165-176. Wang Ying, Wang Yalan, Chen Xiaoqiang, et al.A series-connected 36-pulse rectifier for HVDC with a dual passive harmonic injection method[J]. Power System Protection and Control, 2022, 50(18): 165-176. [22] 孟凡刚, 骆霁嵘, 高蕾, 等. 基于直流侧有源谐波抑制方法的高功率密度多脉波整流器[J]. 电工技术学报, 2017, 32(19): 134-140. Meng Fangang, Luo Jirong, Gao Lei, et al.A high power density multi-pulse rectifier based on harmonic reduction technology at DC link[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 134-140. [23] 孟凡刚, 杨威, 杨世彦. 并联型12脉波整流系统直流侧有源谐波抑制研究[J]. 中国科学: 技术科学, 2011, 41(12): 1628-1639. Meng Fangang, Yang Wei, Yang Shiyan.The harmonic reduction method at DC Link based on unconventional interphase reactor[J]. Science China Technical Science, 2011, 41(12): 1628-1639. [24] Fukuda S, Ohta M, Iwaji Y.An auxiliary supply assisted harmonic reduction scheme for 12-pulse diode rectifiers[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1270-1277. [25] Araujo-Vargas I, Forsyth A J, Chivite-Zabalza F J. Capacitor voltage-balancing techniques for a multi- pulse rectifier with active injection[J]. IEEE Transa- ctions on Industry Applications, 2011, 47(1): 185-198. [26] Li Quanhui, Du Qingxiao, Yin Xinyu, et al.General injection transformer turn ratio design method and hybrid harmonic reduction methods for series- connected multipulse rectifiers[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 15457-15468. [27] Torres-Rivera J M, Araujo-Vargas I. A 36-pulse single transistor, hybrid ripple injector for aerospace rectifiers[C]//IEEE International Autumn Meeting on Power, Electronics and Computing, Mexico, Ixtapa, 2010: 1-6. [28] Chivite-Zabalza F J, Forsyth A J, Araujo-Vargas I. 36-pulse hybrid ripple injection for high-performance aerospace rectifiers[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 992-999. [29] Meng Fangang, Li Taiqi, Wang Lin, et al.Series- connected 36-pulse rectifier using a hybrid harmonic injection method[J]. IET Power Electronics, 2020, 13(17): 4112-4116. [30] Chivite-Zabalza F J, Forsyth A J. A 48-pulse converter using DC-ripple injection[C]//7th Inter- national Conference on Power Electronics and Drive Systems, Bangkok, 2008: 599-606. [31] Yang Chao, Zhang Fanghua, Cheng Long, et al.Open-circuit fault research on asymmetric delta- polygon 18-pulse autotransformer rectifier unit for more electric aircraft[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14615-14630. [32] 孟沛彧, 向往, 邸世民, 等. 大规模海上风电多电压等级混合级联直流送出系统[J]. 电力系统自动化, 2021, 45(21): 120-128. Meng Peiyu, Xiang Wang, Di Shimin, et al.Hybrid cascaded HVDC transmission system with multiple voltage levels for large-scale offshore wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 120-128. [33] Abdollahi R, Gharehpetian G B.Suggestion of DC side passive harmonic reduction circuits for industrial applications based on a comparative study[J]. IET Power Electronics, 2022, 15(6): 531-547.