[1] 腾讯网. 中国工信部:加快5G、工业互联网等新型信息基础设施建设和应用[EB/OL].[2023-03-14] https://new.qq.com/rain/a/20230314A08RJ300.
[2] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
Ma Xiufan, Meng Xiangyu, Zhu Qiuping, et al.Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[3] 蒋廷耀, 谢龙恩, 杜雨, 等. 基于深度强化学习的5G基站储能调度策略[J]. 电力系统自动化, 2023, 47(9): 147-157.
Jiang Tingyao, Xie Longen, Du Yu, et al.Dispatching strategy of energy storage for 5G base stations based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2023, 47(9): 147-157.
[4] Yong Pei, Zhang Ning, Hou Qingchun, et al.Evaluating the dispatchable capacity of base station backup batteries in distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3966-3979.
[5] 刘友波, 王晴, 曾琦, 等. 能源互联网背景下5G网络能耗管控关键技术及展望[J]. 电力系统自动化, 2021, 45(12): 174-183.
Liu Youbo, Wang Qing, Zeng Qi, et al.Key technologies and prospects of energy consumption management for 5G network in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(12): 174-183.
[6] 岑海凤, 许苑, 王军伟, 等. 通信基站备用电池的云储能系统设计与应用[J]. 电源技术, 2020, 44(6): 902-904.
Cen Haifeng, Xu Yuan, Wang Junwei, et al.Design and application of cloud energy storage system for backup battery in communication base station[J]. Chinese Journal of Power Sources, 2020, 44(6): 902-904.
[7] 中国新闻网. 深圳5G基站储能将全部接入深圳虚拟电厂管理中心[EB/OL].[2022-12-14] https://baijiahao.baidu.com/s?id=1752198644606400924&wfr=spider&for=pc.
[8] 林固静, 高赐威, 宋梦, 等. 含通信基站备用储能的虚拟电厂构建及调度方法[J]. 电力系统自动化, 2022, 46(18): 99-107.
Lin Gujing, Gao Ciwei, Song Meng, et al.Construction and scheduling method of virtual power plant with backup energy storage of communication base station[J]. Automation of Electric Power Systems, 2022, 46(18): 99-107.
[9] 麻秀范,冯晓瑜. 考虑5G网络用电需求及可靠性的变电站双Q规划法[J].电工技术学报:1-14[2023-03-16].
Ma Xiufan,Feng Xiaoyu.Double Q Planning Method for Substation Considering Power Demand of 5G Network and Reliability[J]. Transactions of China Electrotechnical Society. 1-14[2023-03-16].
[10] 胡思洋, 廖凯, 杨健维, 等. 基于V2G技术的城市电网供电恢复策略[J]. 电力自动化设备:1-17[2023-03-16].
Hu Siyang, Liao Kai, Yang Jianwei, et al.Power supply restoration strategy of urban power grid based on V2G technology[J]. Electric Power Automation Equipment:1-17[2023-03-16].
[11] 刘伟佳, 孙磊, 林振智, 等. 含间歇电源、储能和电动汽车的配电孤岛短时恢复供电策略[J]. 电力系统自动化, 2015, 39(16): 49-58.
Liu Weijia, Sun Lei, Lin Zhenzhi, et al.Short-period restoration strategy in isolated electrical islands with intermittent energy sources, energy storage systems and electric vehicles[J]. Automation of Electric Power Systems, 2015, 39(16): 49-58.
[12] 许寅, 王颖, 和敬涵, 等. 多源协同的配电网多时段负荷恢复优化决策方法[J]. 电力系统自动化, 2020, 44(2): 123-131.
Xu Yin, Wang Ying, He Jinghan, et al.Optimal decision-making method for multi-period load restoration in distribution network with coordination of multiple sources[J]. Automation of Electric Power Systems, 2020, 44(2): 123-131.
[13] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应:关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552.
Yong Pei, Zhang Ning, Ci Song, et al.5G communication base stations participating in demand response: key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552.
[14] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452-5462.
Zhou Chenyu, Feng Cheng, Wang Yi.Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452-5462.
[15] 刘雨佳, 樊艳芳. 计及5G基站储能和技术节能措施的虚拟电厂调度优化策略[J]. 电力系统及其自动化学报, 2022, 34(1): 8-15.
Liu Yujia, Fan Yanfang.Optimal scheduling strategy for virtual power plant considering 5G base station technology, energy-storage, and energy-saving measures[J]. Proceedings of the CSU-EPSA, 2022, 34(1): 8-15.
[16] 刘战捷. 计及基站备用储能的电力系统经济调度[D]. 济南: 山东大学, .
[17] 麻秀范, 刘子豪, 王颖, 等. 考虑通信负载迁移及储能动态备电的5G基站光伏消纳能力研究[J].电工技术学报:1-15[2023-03-16].
Ma Xiufan, Liu Zihao, Wang Ying, et al.Research on photovoltaic absorption capacity of 5G base station considering communication load migration and energy storage dynamic backup[J]. Transactions of China Electrotechnical Socity: 1-15[2023-03-16].
[18] 陈泽雄, 张新民, 王雪锋, 等. 分布式光伏电站接入配电网的分布鲁棒优化配置方法[J]. 电力系统保护与控制, 2021, 49(13): 30-42.
Chen Zexiong, Zhang Xinmin, Wang Xuefeng, et al.A distributionally robust optimal allocation method for distributed photovoltaic generation stations integrated into a distribution network[J]. Power System Protection and Control, 2021, 49(13): 30-42.
[19] Zare A, Chung C Y, Zhan Junpeng, et al.A distributionally robust chance-constrained MILP model for multistage distribution system planning with uncertain renewables and loads[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5248-5262.
[20] 顾雪平, 白岩松, 李少岩, 等. 考虑风电不确定性的电力系统恢复全过程两阶段鲁棒优化方法[J]. 电工技术学报, 2022, 37(21): 5462-5477.
Gu Xueping, Bai Yansong, Li Shaoyan, et al.Two-stage robust optimization method for the whole process of power system restoration considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5462-5477.
[21] 瞿凯平, 苏伟行, 姜宇轩, 等. 基于点估计仿射可调鲁棒优化的含储能电力系统实时调度[J]. 电网技术:1-12[2023-03-16].
Qu Kaiping, Su Weihang, Jiang Yuxuan, et al.Real-time power dispatch with storages using a point estimate-based affinely adjustable robust optimization[J]. Power System Technology: 1-12[2023-03-16].
[22] 包广清, 周家武, 马明, 等. 考虑风电波动不确定性的两阶段鲁棒优化分频调度方法[J]. 电网技术, 2020, 44(12): 4530-4538.
Bao Guangqing, Zhou Jiawu, Ma Ming, et al.Two-stage frequency division robust optimal dispatching method considering wind power fluctuation uncertainty[J]. Power System Technology, 2020, 44(12): 4530-4538.
[23] Xu Xiaoyuan, Yan Zheng, Shahidehpour M, et al.Data-driven risk-averse two-stage optimal stochastic scheduling of energy and reserve with correlated wind power[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 436-447.
[24] 段偲默, 苗世洪, 霍雪松, 等. 基于动态Copula的风光联合出力建模及动态相关性分析[J]. 电力系统保护与控制, 2019, 47(5): 35-42.
Duan Simo, Miao Shihong, Huo Xuesong, et al.Modeling and dynamic correlation analysis of wind/solar power joint output based on dynamic Copula[J]. Power System Protection and Control, 2019, 47(5): 35-42.
[25] 关磊. 基于蜂窝网络业务空时分布规律的高能效服务机制研究[D]. 北京: 北京邮电大学, .
[26] Yong Pei, Zhang Ning, Liu Yuxiao, et al.Exploring the cellular base station dispatch potential towards power system frequency regulation[J]. IEEE Transactions on Power Systems, 2022, 37(1): 820-823.
[27] 张弘历, 李华强, 杨植雅, 等. 基于潮流增长率泰尔熵的脆弱支路辨识[J]. 电网技术, 2017, 41(7): 2340-2346.
Zhang Hongli, Li Huaqiang, Yang Zhiya, et al.Identification of vulnerable line based on the theil entropy of flow growth rate[J]. Power System Technology, 2017, 41(7): 2340-2346.
[28] 李雪. 基于均匀性理论的电网脆弱性评估与应用[D]. 徐州: 中国矿业大学, .
[29] 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022, 4307.
Liu Yixin, Guo Li, Wang Chengshan.Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022, 4307.
[30] 郭亮, 王晓卫, 康乾坤, 等. 基于粒子群优化与K-means聚类的配网5G改造经济性评价方法[J]. 电网与清洁能源, 2022, 38(6): 31-36, 43.
Guo Liang, Wang Xiaowei, Kang Qiankun, et al.An economic evaluation method for 5G transformation of distribution network based on particle swarm optimization and K-means clustering[J]. Power System and Clean Energy, 2022, 38(6): 31-36, 43.
[31] 闫涵, 王建华, 范须露, 等. 基于用户停电损失评估的有源配电网灾后供电恢复模型[J]. 电力系统自动化, 2022, 46(5): 31-42.
Yan Han, Wang Jianhua, Fan Xulu, et al.Post-disaster power supply restoration model for active distribution network based on customer interruption cost assessment[J]. Automation of Electric Power Systems, 2022, 46(5): 31-42.
[32] 丁浩然, 张博, 唐巍, 等. 考虑源-网-荷-储协同的配电台区分布式光伏消纳能力评估[J]. 供用电, 2023, 40(3): 2-8, 31.
Ding Haoran, Zhang Bo, Tang Wei, et al.Evaluation of distributed photovoltaic consumption capacity of distribution station area considering source-network-load-storage collaboration[J]. Distribution & Utilization, 2023, 40(3): 2-8, 31. |