Model-Free Predictive Current Control of Segmented Dual Three-phase Permanent Magnet Linear Synchronous Motor
Zhou Shijiong1,2, Li Yaohua1,2, Shi Liming1,2, Zhang Mingyuan1,2, Liu Jinhai1,2
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China;
2. University of Chinese Academy of Sciences Beijing 100049 China
During the segmented dual three-phase permanent magnet linear synchronous motor (PMLSM), the deadbeat predictive current control (DPCC) is vulnerable to the back electromotive force (EMF) fluctuation, which cannot achieve exact current tracking and thrust control when the mover enters and exits the stator segments. At the same time, DPCC depends on motor models, while the model of segmented dual three-phase (PMLSM) is complex. Besides, there are additional harmonic subspace inductors in its harmonic subspace, which is easy to aggravate the degradation of current control when parameters are mismatched. To solve these problems, a model-free predictive current control (MFPCC) method is proposed in this paper.
Firstly, the influence of parameter mismatch and back EMF fluctuation in the conventional DPCC is analyzed, and it is deduced that parameter mismatch causes the errors in the control voltage, and the additional inductance in the harmonic subspace aggravates the parameter variation. Secondly, this paper takes the parameter mismatch and back EMF fluctuation as the lumped disturbance. Then, a model-free predictive current controller is designed based on an ultra-local model, which is divided into a known linear term related to the current and an unknown part related to the parameter mismatch and back EMF. Finally, a disturbance observer is designed to observe the unknown part in this ultra-local model, and its stability is demonstrated.
Hardware-in-the-loop experiments prove that the proposed method is independent of motor parameters and has strong robustness. 1) When the speed control is open-loop and the flux linkage ψf changes in the DPCC control, the q-axis current cannot effectively track the given value, which thrust fluctuation is about 5.25%. When the Ld, Lq and Lxy of the controller increase to 200% of the original value, the q-axis current of the DPCC has obvious fluctuations, and the thrust fluctuation range is about 2%. The q-axis current of the MFPCC proposed in this paper can strictly track the given value and the thrust fluctuation range is only 1.25%, which proves that the MFPCC has good parameter robustness. 2) When the speed control is closed-loop and the speed reference suddenly increases to 12m/s within 0.75s, the q-axis current tracking performance of DPCC has overshoot and cannot effectively track the reference value iqref, due to the inductance and flux linkage parameters become 200% and 50% of the original respectively. However, the q-axis current tracking performance of MFPCC is smooth, and the tracking speed is fast. After parameter mismatch, the time of MFPCC following the slope is 0.36s, which is similar to 0.35s that of DPCC. The time of MFPCC following step signal is 0.53s, which is smaller than 0.6s that of DPCC speed tracking time. 3) The total harmonic distortion of DPCC is twice that of MFPCC.
The conclusions are as follows. (1) The parameter mismatch of the segmented dual three-phase PMLSM and the dynamic disturbance of back EMF will introduce disturbance to the current control, deteriorate the current tracking performance, and lead to thrust fluctuation. In addition, the mismatched harmonic subspace inductance parameter Lxy after vector space decomposition (VSD) further affects the current performance. (2) The MFPCC proposed in this paper uses an ultra-local model to simplify the system model, which is divided into a known linear part and an unknown part including back EMF and parameter mismatch. The disturbance observer accurately estimates the unknown part. (3) MFPCC has strong robustness to parameter mismatch. It can effectively suppress the influence of back EMF dynamic disturbance caused by mover motions. The proposed method has good tracking performance of q-axis current in the whole movement, small thrust and velocity fluctuation, and fast dynamic response.
周世炯, 李耀华, 史黎明, 张明远, 刘进海. 分段式双三相永磁直线同步电机的无模型电流预测控制[J]. 电工技术学报, 0, (): 20235420-20235420.
Zhou Shijiong, Li Yaohua, Shi Liming, Zhang Mingyuan, Liu Jinhai. Model-Free Predictive Current Control of Segmented Dual Three-phase Permanent Magnet Linear Synchronous Motor. Transactions of China Electrotechnical Society, 0, (): 20235420-20235420.
[1] 鲁军勇, 马伟明, 许金. 高速长定子直线感应电动机的建模与仿真[J]. 中国电机工程学报, 2008, 28(27): 89-94.
Lu Junyong, Ma Weiming, Xu Jin.Modeling and simulation of high speed long primary double-sided linear induction motor[J]. Proceedings of the CSEE, 2008, 28(27): 89-94.
[2] Štumberger Gorazd, Žarko Damir, Aydemir Mehmet Timur, et al. Design and Comparison of Linear Synchronous Motor and Linear Induction Motor for Electromagnetic Aircraft Launch System[C]. IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03.
[3] 郭思源, 周理兵, 齐歌. 双三相永磁同步电机电磁性能解析计算[J]. 电工技术学报, 2014, 29(5): 17-28.
Guo Siyuan, Zhou Libing, Qi Ge.Analytical Calculation of Electromagnetic Performance of Dual-Three-Phase Permanent Magnet Synchronous Motor[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 17-28.
[4] 赵勇, 黄文新, 林晓刚, 等. 基于权重系数消除和有限控制集优化的双三相永磁容错电机快速预测直接转矩控制[J]. 电工技术学报, 2021, 36(1): 3-14.
Zhao Yong, Huang Wenxin, Lin Xiaogang, et al.Fast Predictive Direct Torque Control of Dual Three-Phase Permanent Magnet Fault Tolerant Machine Based on Weighting Factor Elimination and Finite Control Set optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 3-14.
[5] 符慧, 左月飞, 刘闯, 等. 永磁同步电机调速系统的一种变给定增益PI控制器[J]. 电工技术学报, 2017, 32(1): 168-174.
Fu Hui, Zuo Yuefei, Liu Chuang, et al.A Variable Given Gain PI Controller for Permanent Magnet Synchronous Motor Speed Control System[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 168-174.
[6] 章回炫, 范涛, 边元均, 等.永磁同步电机高性能电流预测控制[J]. 电工技术学报, 2022, 37(17): 4335-4345
Zhang Huixuan, Fan Tao, Bian Yuanjun, et al.Predictive Current Control Strategy of Permanent Magnet Synchronous Motors with High Performance[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4335-4345.
[7] 祝贺, 张今朝, 董睿, 等. 绕组分段永磁直线同步电机无传感器控制[J]. 电工技术学报, 2017, 32(21): 65-76.
Zhu He, Zhang Jinzhao, Dong Rui, et al.Sensorless Control of Winding Segmented Permanent Magnet Linear Synchronous Motor[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 65-76.
[8] 刘伟, 王俊. 永磁同步电机参数辨识研究综述[J]. 电气技术, 2020, 21(8): 1-5+135.
Liu Wei, Wang Jun. Review of Research on Parameter Identification of Permanent Magnet Synchronous Motor[J]. Electrical Engineering, 2020, 21(8): 1-5+135.
[9] Yang M, Lang X, Long J, et al.Flux Immunity Robust Predictive Current Control with Incremental Model and Extended State Observer for PMSM Drive[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9267-9279.
[10] Siami M, Abbaszadeh A, Khaburi D A, et al.Robustness Improvement of Predictive Current Control Using Prediction Error Correction for Permanent-Magnet Synchronous Machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 1-1.
[11] 郭科宇, 史黎明, 郑雲, 等. 双三相分段供电永磁直线同步电机电感分析与不平衡抑制[J]. 导航与控制, 2021, 20(5): 89-104.
Guo Keyu, Shi Liming, Zheng Yun, et al.Inductance Analysis and Unbalance Suppression of Dual-Three-Phase Segment-Powered Permanent Magnet Linear Synchronous Motors[J]. Navigation and Control, 2021, 20(5): 89-104.
[12] 郭科宇, 李耀华, 史黎明, 等. 电枢分段供电永磁直线同步电机的非线性数学模型[J]. 电工技术学报, 2021, 36(6): 1126-1137.
Guo Keyu, Li Yaohua, Shi Liming, et al.Nonlinear Mathematical Model of Permanent Magnet Linear Synchronous Motor Powered by Armature Segmentation[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1126-1137.
[13] Liu S, Liu C.Virtual-Vector based Robust Predictive Current Control for Dual Three-Phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2048-2058.
[14] 贾成禹, 王旭东, 周凯. 基于电感辨识的内置式永磁同步电机电流模型预测控制[J]. 电机与控制学报, 2021, 25(11): 75-82.
Jia Chengyu, Wang Xudong, Zhou Kai.Model Predictive Control Method for Current Control of IPMSM with Inductance Parameter Identification[J]. Electric Machines and Control, 2021, 25(11): 75-82.
[15] 童力, 邹旭东, 丰树帅, 等. 基于预测无差拍算法的永磁同步发电机无传感器控制[J]. 电工技术学报, 2013, 28(3): 17-26.
Tong Li, Zou Xudong, Feng Shushuai, et al.Sensorless Control of Permanent Magnet Synchronous Generator Based on Predictive Deadbeat Algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 17-26 .
[16] 牛里, 杨明, 王庚, 等. 基于无差拍控制的永磁同步电机鲁棒电流控制算法研究[J]. 中国电机工程学报, 2013, 33(15): 78-85+13.
Niu Li, Yang Ming, Wang Geng, et al. Research on Robust Current Control Algorithm of Permanent Magnet Synchronous Motor Based on Deadbeat Control[J]. Proceedings of the CSEE, 2013, 33(15): 78-85+13.
[17] 殷凯轩, 高琳, 付文华, 等. 永磁同步电机的改进模型预测自抗扰前馈控制[J]. 西安交通大学学报, 2021, 55(4): 29-38.
Yin Kaixuan, Gao Lin, Fu Wenhua, et al.Improved Model Prediction Active Disturbance Rejection Feedforward Control of Permanent Magnet Synchronous Motor[J]. Journal of Xi'an Jiaotong University, 2021, 55(4): 29-38.
[18] 尹忠刚, 白聪, 杜超, 等. 基于内模干扰观测器的永磁同步直线电机无差拍电流预测控制方法[J]. 电工技术学报, 2018, 33(24): 5741-5750.
Yin Zhonggang, Bai Cong, Du Chao, et al.Deadbeat Current Predictive Control Method of Permanent Magnet Synchronous Linear Motor Based on Internal Model Interference Observer[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5741-5750.
[19] 孙静, 刘旭东. 基于无差拍预测控制和扰动观测器的永磁同步电机电流控制[J]. 电机与控制应用, 2017, 44(10): 25-29+35.
Sun Jing, Liu Xudong. Current Control of Permanent Magnet Synchronous Motor Based on Deadbeat Predictive Control and Disturbance Observer[J]. Electric Machines and Control Application, 2017, 44(10): 25-29+35.
[20] Han J.From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[21] Fliess M, Cédric J.Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control[J]. IFAC Proceedings, 2009, 42(10): 1531-1550.
[22] 苏光靖, 李红梅, 李争, 等. 永磁同步直线电机无模型电流控制[J]. 电工技术学报, 2021, 36(15): 3182-3190.
Su Guangjing, Li Hongmei, Li Zheng, et al.Model-Free Current Control of Permanent Magnet Synchronous Linear Motors[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3182-3190.
[23] Zhang Y, Jin J, Huang L.Model-Free Predictive Current Control of PMSM Drives Based on Extended State Observer Using Ultralocal Model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003.
[24] 赵凯辉, 戴旺坷, 周瑞睿, 等. 基于扩展滑模扰动观测器的永磁同步电机新型无模型滑模控制[J]. 中国电机工程学报, 2022, 42(6): 2375-2386.
Zhao Kaihui, Dai Wangke, Zhou Ruirui, et al.A Novel Model-Free Sliding Mode Control of Permanent Magnet Synchronous Motor Based on Extended Sliding Mode Disturbance Observer[J]. Proceedings of the CSEE, 2022, 42(6): 2375-2386.
[25] Safaei A, Mahyuddin M N.Adaptive Model-Free Control based on an Ultra-local Model with Model-Free Parameter Estimations for a generic SISO system[J]. IEEE Access, 2018, 6:4266-4275.
[26] Chen W H, Balance D J, Gawthrop P J, et al.A Nonlinear Disturbance Observer for Robotic Manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.
[27] Chen W H, Yang J, Guo L, et al.Disturbance-Observer-Based Control and Related Methods—An Overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095.
[28] 王海兵. 双三相永磁同步电机高性能调速系统及容错运行研究[D]. 浙江大学, 2017.
[29] Zhao Y, Lipo T A.Space Vector PWM Control of Dual Three-phase Induction Machine Using Vector Space Decomposition[J]. IEEE Transactions on Industry Applications, 1995, 31(5): 1100-1109.
[30] 郭科宇, 李耀华, 史黎明. 分段供电双三相永磁同步直线电机电流解耦与扰动抑制[J]. 电工技术学报, 2022, 37(24): 6332-6344.
Guo Keyu, Li Yaohua, Shi Liming.Current Decoupling and Force Disturbance Suppression of Dual Three-Phase Permanent Magnet Linear Synchronous Motors with Section Power Supply[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6332-6344.
[31] Chen W H.Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710.
[32] Lee J S, Choi G.Modeling and hardware-in-the-loop system realization of electric machine drives—a review[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 194-201.