电工技术学报  2021, Vol. 36 Issue (14): 3063-3071    DOI: 10.19595/j.cnki.1000-6753.tces.200381
高电压与放电 |
正温度系数材料调控绝缘直流电场分布
周文俊1, 滕陈源1,2, 周远翔1,2,3, 张灵2, 张云霄2
1. 武汉大学电气与自动化学院 武汉 430072;
2. 电力系统及发电设备安全控制和仿真国家重点实验室(清华大学电机系) 北京 100084;
3. 电力系统及大型发电设备安全控制和仿真国家重点实验室风光储分室 (新疆大学电气工程学院) 乌鲁木齐 830047
Regulation of DC Electric Field Distribution within Insulation Via Positive Temperature Coefficient Material
Zhou Wenjun1, Teng Chenyuan1,2, Zhou Yuanxiang1,2,3, Zhang Ling2, Zhang Yunxiao2
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China;
2. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China;
3. The Wind Solar Storage Division of State Key Laboratory of Power System and Generation Equipment School of Electrical Engineering Xinjiang University Urumqi 830047 China
全文: PDF (2230 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 绝缘材料电阻率负温度系数(NTC)效应造成直流电场畸变,增大了高压直流设备的设计难度。为了弱化电阻率对温度的依赖,该文制备正温度系数(PTC)电阻率的陶瓷材料掺杂的环氧树脂复合材料(质量分数为0~35%),并测试热导率、电阻率-温度特性和直流击穿场强,仿真温度梯度下绝缘内部电场和温度分布。结果表明,高掺杂比例时的电场优化效果较好;质量分数为20%掺杂的环氧树脂复合材料的热导率提高66%,径向温差减小55%;电阻率负温度效应弱化,电导活化能下降了35%;最大畸变电场降低了58%,而直流击穿场强仅下降16%。分析认为,填料的PTC效应优化了环氧树脂复合材料的电阻率-温度特性,降低了热点温度,协同抑制电场畸变。正温度系数材料可改善温度梯度下绝缘内部的直流电场分布,相关复合材料在输电设备中具有应用可能性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周文俊
滕陈源
周远翔
张灵
张云霄
关键词 温度梯度电阻率-温度特性电场调控正温度系数材料环氧树脂    
Abstract:Negative temperature coefficient (NTC) electrical resistivity of insulating materials causes the distortion of DC electric field, increasing the design difficulty of HVDC equipment. The ceramic (0~35%) with positive temperature coefficient (PTC) electrical resistivity was doped into epoxy resin to weaken its temperature dependence of electrical resistivity (0~35%). Thermal conductivity, electrical resistivity-temperature characteristics and DC breakdown strength were tested. The electric field and temperature distribution under temperature gradient were simulated. The higher doping of PTC filler has a better electric field distribution. As for epoxy composite with 20% filler, the thermal conductivity increases by 66% and the radial temperature gradient decreases by 55%; the NTC effect weakens and the activation energy decreases by 35%; the maximum distortion of electric field decreases by 58%, while the DC breakdown strength only decreases by 16%. The PTC effect of fillers mitigating the decline of electrical resistivity with temperature coupled with decreased hot-spot temperature suppresses the distortion of electric field. The optimization of electric field distribution within insulation via PTC materials/epoxy composites has potential to be used in HVDC electrical equipment.
Key wordsTemperature gradient    electrical resistivity-temperature characteristics    electric field regulation    positive temperature coefficient materials    epoxy resin   
收稿日期: 2020-04-17     
PACS: TM215.92  
基金资助:国家自然科学基金(51977186, 51907101)和国家电网公司总部科技(SGTYHT/18-JS-206)资助项目
通讯作者: 周文俊 男,1959年生,博士,研究方向为绝缘材料、输变电设备状态检测与运维技术、防雷接地等。E-mail: wjzhou@whu.edu.cn   
作者简介: 滕陈源 男,1992年生,博士研究生,研究方向为复合电介质材料及其绝缘性能。E-mail: tengchenyuan@126.com
引用本文:   
周文俊, 滕陈源, 周远翔, 张灵, 张云霄. 正温度系数材料调控绝缘直流电场分布[J]. 电工技术学报, 2021, 36(14): 3063-3071. Zhou Wenjun, Teng Chenyuan, Zhou Yuanxiang, Zhang Ling, Zhang Yunxiao. Regulation of DC Electric Field Distribution within Insulation Via Positive Temperature Coefficient Material. Transactions of China Electrotechnical Society, 2021, 36(14): 3063-3071.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200381          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I14/3063