Abstract:Circular winding brushless DC motor has the similar structure with brush DC motor. The stator windings are connected in a ring and the commutator is made up of controllable power switch. The rotor is permanent magnet. Because of the particularity of structure, the drive methods of conventional permanent magnet motor can’t be applied to circular winding brushless DC (CWBLDC) motor directly. Therefore, 4-quadrant operation of CWBLDC motor is analyzed in detail based on the structure of CWBLDC motor. The system of CWBLDC motor is introduced at first, then the sequence control of the drive circuit in forward and reverse mode is studied. After that the braking process and the controllability of braking current are analyzed. The simulation of the motor process, braking process and forward-reverse process is carried out, and an experiment platform for CWBLDC motor is set up. The simulation and experimental results indicate that the analysis in electric mode is correct and the braking method is effective, which can achieve the 4-quadrant operation of CWBLDC motor.
[1] Li Zhu, Jiang Shuzhong, Jiang Jianzhong, et al.A new simplex wave winding permanent-magnet brushless DC machine[J]. IEEE Transactions on Magnetics, 2011, 47(1): 252-259. [2] Wang Dong, Lin Huangda, Cheng Siwei, et al.A novel circular winding brushless DC (CWBLDC) machine with low torque ripple[C]//IECON 2015- 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015: 001585-001591. [3] 林黄达, 王东, 程思为, 等. 环形绕组无刷直流电机负载换向的解析模型[J]. 电工技术学报, 2017, 32(9): 40-47. Lin Huangda, Wang Dong, Cheng Siwei, et al.Analytical model of load commutation of the circular winding brushless DC machine[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 40-47. [4] Lin Huangda, Cheng Siwei, Wang Dong, et al.Load commutation of the circular winding brushless DC machine (CWBLDC)[C]//IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015: 002741-002746. [5] Zhang Qinghu, Cheng Siwei, Wang Dong, et al.Multiobjective design optimization of high-power circular winding brushless DC motor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1740-1750. [6] Cheng Siwei, Zhang Qinghu, Jia Zhewu, et al.Dynamic modeling of the circular winding brushless DC (CWBLDC) machine[C]//2016 IEEE 8th Inter- national Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016: 2545-2550. [7] 张兰红, 唐慧雨, 何坚强. 基于霍尔位置信号的无刷直流电机直接转矩控制[J]. 电机与控制学报, 2018, 22(9): 56-63. Zhang Lanhong, Tang Huiyu, He Jianqiang.Direct torque control of brushless DC motor based on hall position signals[J]. Electric Machines and Control, 2018, 22(9): 56-63. [8] 潘峰, 闫庚龙, 苑伟华, 等. 基于双滑模的永磁同步电机直接转矩控制[J]. 电工技术学报, 2018, 33(增刊2): 427-433. Pan Feng, Yan Genglong, Yuan Weihua, et al.Research on direct torque control for permanent magnet synchronous motor based on the double sliding mode[J]. Transactions of China Electro- technical Society, 2018, 33(S2): 427-433. [9] Zhang Xiaoguang, Sun Lizhi, Zhao Ke, et al.Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[J]. IEEE Transactions on Power Electro- nics, 2013, 28(3): 1358-1365. [10] 张立伟, 李行, 宋佩佩, 等. 基于新型滑模观测器的永磁同步电机无传感器矢量控制系统[J]. 电工技术学报, 2019, 34(增刊1): 70-78. Zhang Liwei, Li Hang, Song Peipei, et al.Sensorless vector control using a new sliding mode observer for permanent magnet synchronous motor speed control system[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 70-78. [11] 耿洁, 陈振, 刘向东, 等. 永磁同步电机的自适应逆控制[J]. 电工技术学报, 2011, 26(6): 51-55, 61. Geng Jie, Chen Zhen, Liu Xiangdong, et al.Adaptive inverse control of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 51-55, 61. [12] 王磊, 李颖晖, 朱喜华, 等. 存在扰动的永磁同步电机混沌运动模糊自适应同步[J]. 电力系统保护与控制, 2011, 39(11): 33-37, 43. Wang Lei, Li Yinghui, Zhu Xihua, et al.Chaos synchronization of permanent magnet synchronous motor with disturbance using fuzzy adaptive logic[J]. Power System Protection and Control, 2011, 39(11): 33-37, 43. [13] 夏长亮, 方红伟. 永磁无刷直流电机及其控制[J].电工技术学报, 2012, 27(3): 25-34. Xia Changliang, Fang Hongwei.Permanent-magnet brushless DC motor and its control[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 25-34. [14] 夏长亮, 张茂华, 王迎发, 等. 永磁无刷直流电机直接转矩控制[J]. 中国电机工程学报, 2008, 28(6): 104-109. Xia Changliang, Zhang Maohua, Wang Yingfa, et al.The direct torque control for permanent magnet brushless DC motors[J]. Proceedings of the CSEE, 2008, 28(6): 104-109. [15] 刘军, 李金飞, 俞金寿. 无刷直流伺服电机四象限运行分析[J]. 上海交通大学学报, 2009, 43(12): 1910-1915. Liu Jun, Li Jinfei, Yu Jinshou.Analysis on 4- quadrant operation of brushless DC servo system[J]. Journal of Shanghai Jiaotong University, 2009, 43(12): 1910-1915. [16] 谭博, 马瑞卿, 刘卫国. 一种永磁无刷直流电动舵机四象限控制[J]. 电工技术学报, 2011, 26(9): 73-79. Tan Bo, Ma Ruiqing, Liu Weiguo.A four-quadrant control for permanent magnet brushless DC electric actuator[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 73-79. [17] 汤蕴璆. 电机学[M]. 北京: 机械工业出版社, 2013. [18] 张寅孩, 葛金法, 汪松松. 基于Bang-Bang最优理论的感应电机能耗制动相轨迹分析[J]. 电工技术学报, 2011, 26(2): 74-80. Zhang Yinhai, Ge Jinfa, Wang Songsong.Energy- consumed braking phase trajectory of induction motor based on Bang-Bang optimal theory[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 74-80. [19] 宋哲, 王友仁, 鲁世红, 等. 一种电动车用无刷直流电机混合回馈制动控制方法[J]. 电工技术学报, 2016, 31(6): 74-80. Song Zhe, Wang Youren, Lu Shihong, et al.A hybrid regenerative braking control method of brushless DC motor for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 74-80. [20] 赵国柱, 韩英, 魏民祥, 等. PWM调制方案对无刷直流电机电动汽车再生ABS的影响[J]. 重庆大学学报, 2014, 37(2): 31-36, 45. Zhao Guozhu, Han Ying, Wei Minxiang, et al.Effect of the PWM modulation scheme on the regenerative anti-lock braking system of the electric vehicle driven by apermanent magnet brushless DC motor[J]. Journal of Chongqing University, 2014, 37(2): 31-36, 45. [21] 王晓远, 傅涛. 基于模型预测控制策略的电动车用无刷直流电机回馈制动的研究[J]. 电工技术学报, 2017, 32(9): 16-23. Wang Xiaoyuan, Fu Tao.Constant current regener- ative brake in BLDCM for electric vehicle based on model predictive current control strategy[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(9): 16-23.