Abstract:Based on the dynamic model, equivalent circuit model and volt-ampere characteristics of the cantilever Gallium-iron alloy, the output voltage and output power models of the cantilever Gallium-iron alloy vibration energy collecting device were established, the energy storage circuit was designed, and the experimental platform of the Gallium-iron alloy vibration energy collecting device was built. The experimental results show that at the natural frequency of 67Hz and the external load of 17Ω, the maximum output power of the prototype is 116mW, and the corresponding power density is about 271μW/cm3. The maximum output voltage of the intelligent voltage mediation circuit can be maintained at 5.1V, and the charging voltage of 4.18V can be provided for the lithium battery. The experiment verifies that the output voltage of the vibration collection device can effectively charge the supercapacitor and lithium battery through the energy storage circuit designed in this paper, realizing the storage of energy. The prototype can continuously light up the LED lamp and digital tube, which further proves the effectiveness of the vibration collection device and storage circuit mentioned in this paper, and can provides the a basis for its practical application in the power supply of wireless sensor nodes.
刘慧芳, 曹崇东, 赵强, 马凯, 谷艳玲. 悬臂式铁镓合金振动能量收集的存储方法[J]. 电工技术学报, 2020, 35(14): 3137-3146.
Liu Huifang, Cao Chongdong, Zhao Qiang, Ma Kai, Gu Yanling. The Method of Vibration Energy Collection and Storage of Cantilever Gallium-Iron Alloy. Transactions of China Electrotechnical Society, 2020, 35(14): 3137-3146.
[1] Deepak S, Amritesh O, Amol P B.Heterogeneity consideration in wireless sensor networks routing algorithms: a review[J]. The Journal of Supercom- puting, 2019, 75(5): 2341-2394. [2] 赵军, 李乃梁, 王磊, 等. 电动汽车无线充电系统对人体及体内植入器件电磁安全研究[J]. 电工技术学报, 2018, 33(1): 27-33. Zhao Jun, Li Nailiang, Wang Lei, et al.Research on electromagnetic safety of wirelesscharging system of electric vehicle to human body andimplanted device[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 27-33. [3] Shi Shuxin, Yue Qiuqin, Zhang Zuwei.A self- powered engine health monitoring system based on L-shaped wideband piezoelectric energy harvester[J]. Micromachines, 2018, 9(12): 1-12. [4] Alrashdan M H S, Hamzah A A, Majlis B. Design and optimization of cantilever based piezoelectric micro power generator for car diacpacemaker[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2015, 21(8): 1607-1617. [5] 李志. 基于自供电的无线传感器网络MAC层协议研究[D]. 南京: 南京航空航天大学, 2014. [6] Liu Huifang, Wang Shijie, Zhang Yu.Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system[J]. Proceedings of the Institution of Mechancial Engineers Part C-Journal of Mechancial Engineering Science, 2015, 229(9): 1639-1651. [7] 菅新乐. 基于压电陶瓷的汽车轮胎压力监测系统无源化研究[D]. 吉林: 吉林大学, 2007. [8] 罗洪波. 压电发电在汽车轮胎报警器上的应用基础研究[D]. 吉林: 吉林大学, 2008. [9] 乔印虎. 压电板壳风力机叶片设计与振动控制研究[D]. 合肥: 合肥工业大学, 2014. [10] Khan M B, Kim D H, Han J H, Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit[J]. Nano Energy, 2019, 58: 211-219. [11] 王光庆, 徐文潭, 杨斌强. T型直线超声波电动机的运行机理及其特性分析[J]. 电工技术学报, 2017, 32(15): 111-119. Wang Guangqing, Xu Wentan, Yang Binqiang.The operation mechanism and characteristic analysis of T-line ultrasonic motor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 111-119. [12] Zhou Maoying, Al-Furjan M S H, Wang Ban. Modeling and efficiency analysis of a piezoelectric energy harvester based on the flow induced vibration of a piezoelectric composite pipe[J]. Sensors, 2018, 18(12): 1-15. [13] Febbo M, Machado S P, Gatti C D, et al.An out- of-plane rotational energy harvesting system forlow frequency environments[J]. Energy Conversionand Management, 2017, 152(12): 166-175. [14] Orrego S, Shoele K, Ruas A, et al.Harvesting ambient wind energy with an inverted piezoele- ctricflag[J]. Applied Energy, 2017, 194: 212-222. [15] 赵争鸣, 王旭东. 电磁能量收集技术现状及发展趋势[J]. 电工技术学报, 2015, 30(13): 1-11. Zhao Zhengming, Wang Xudong.Current situation and development trend of electromagneti energy collection technology[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 1-11. [16] 杨庆新, 阎荣格, 陈海燕. 新型高性能电工材料应用特性建模技术研究[J]. 电工技术学报, 2006, 21(1): 2-6. Yang Qingxin, Yan Rongge, Chen Haiyan.Research on applied characteristic modeling technology of new high performance electrical materials[J]. Transa- ctions of China Electrotechnical Society, 2006, 21(1): 2-6. [17] Vivek S, Geetha P, Saravanan V, et al.Magneto- electric coupling in strained strontium titanate and Metglas based magnetoelectric trilayer[J]. Journal of Alloys and Compounds, 2018, 789: 1056-1061. [18] 贲彤, 陈龙, 阎荣格. 考虑磁化及磁致伸缩特性各向异性的感应电机铁心电磁应力分析[J]. 电工技术学报, 2019, 34(1): 67-74. Ben Tong, Chen Long, Yan Rongge.Electromagnetic stress analysis of the core of an induction motor considering the anisotropy of magnetization and magnetostriction characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 67-74. [19] Wang Lei, Yuan F G.Energy harvesting by magneto- strictive material (MsM) for powering wireless sensors in SHM[C]//International Symposium on: Smart Structures & Materials & Nondestructive Evaluation & Health Monitoring. International Society for Optics and Photonics, Carolina, USA, 2007: 1-12. [20] 赵冉, 卢全国, 刘柳. 磁致伸缩悬臂梁振动能量采集器建模与仿真[J]. 南昌工程学院学报, 2016, 35(4): 10-12. Zhao Ran, Lu Quanguo, Liu Liu.Modeling and simulation of vibration energy collector for magneto- strictive cantilever beam[J]. Journal of Nanchang Institute of Engineering, 2016, 35(4): 10-12. [21] Wang Qingming, Du Xiaohong, Xu Baomin.Elec- tromechanical coupling and output efficiency of piezoelectric bending actuators[J]. IEEE Transa- ctionson Ultrasonics Ferroelectrics and Frequency Control, 1999, 46(3): 638-646. [22] Liu Huifang, Chen Cong, Qiang Zhao.Comprehen- sive analysis of the energy harvesting performance of a Fe-Ga based cantilever harvester in free excitation and base excitation mode[J]. Sensors, 2019, 19(15): 1-25.