Optimization of Energy Storage Box Mechanical Structure and Grid-Connected Generation Control Strategy for Mechanical Elastic Energy Storage
Zheng Xiaoming1, Mi Zengqiang2, Yu Yang2, Jia Yulong2, Liu Liqing3
1. State Grid Shanxi Electric Power Company Economic and Technical Research InstituteTaiyuan 030001 China; 2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourceNorth China Electric Power University Baoding 071003 China; 3. State Grid Tianjin Electric Power Company Electric Power Research InstituteTianjin 300000 China
Abstract:The mechanical elastic energy storage box is the energy storage element of the mechanical elastic energy storage unit. This paper proposes a new mechanical assembly technology based on push and pull structure. On the basis of the traditional energy storage box group "hand and hand" mechanical linkage structure, the unidirectional overrunning clutch takes the place of the coupling between the traditional energy storage boxes, which realizes the flexible linkage of the storage box group and has the function of anti-reverse self-locking. A mathematical model of the rated power and energy storage capacity of the storage box is set up. An adaptive speed control algorithm for permanent magnet synchronous generator is proposed, and a unit power factor backstepping control algorithm for grid side converter is also proposed. The experimental results show that this method can effectively suppress the disturbance of unit parameters. The power generation process of PMSG can be carried out smoothly, the DC side voltage of the grid side converter is stable, and the unit power factor grid-connected control is realized to ensure the maximum output of the device and reduce the capacity of converter.
郑晓明, 米增强, 余洋, 贾雨龙, 刘力卿. 机械弹性储能箱结构及并网控制策略优化[J]. 电工技术学报, 2019, 34(22): 4708-4718.
Zheng Xiaoming, Mi Zengqiang, Yu Yang, Jia Yulong, Liu Liqing. Optimization of Energy Storage Box Mechanical Structure and Grid-Connected Generation Control Strategy for Mechanical Elastic Energy Storage. Transactions of China Electrotechnical Society, 2019, 34(22): 4708-4718.
[1] 范博然, 王奎, 李永东, 等. 基于模块化多电平矩阵变流器的可调速抽水蓄能系统[J]. 电工技术学报, 2018, 33(增刊2): 511-518. Fan Boran, Wang Kui, Li Yongdong, et al.Adjustable- speed hydraulic pumped storage system based on the modular multilevel matrix converter[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 511-518. [2] 陈亮亮, 祝长生, 王忠博. 基于逆系统解耦的电磁轴承飞轮转子系统二自由度控制[J]. 电工技术学报, 2017, 32(23): 100-114. Chen Liangliang, Zhu Changsheng, Wang Zhongbo.Two-degree-of-freedom control for active magnetic bearing flywheel rotor system based on inverse system decoupling[J]. Transactions of China Electro- technical Society, 2017, 32(23): 100-114. [3] 李姚旺, 苗世洪, 尹斌鑫, 等. 含先进绝热压缩空气储能电站的电力系统实时调度模型[J]. 电工技术学报, 2019, 34(2): 387-397. Li Yaowang, Miao Shihong, Yin Binxin, et al.Real- time dispatch model for power system with advanced adiabatic compressed air energy storage[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(2): 387-397. [4] 刘诗涵, 周羽生, 许振华, 等. 基于超级电容蓄能的永磁同步海上风电低电压穿越研究[J]. 电力系统保护与控制, 2018, 46(5): 1-7. Liu Shihan, Zhou Yusheng, Xu Zhenhua, et al.Research on low-voltage ride through capability of permanent magnetic synchronous off shore wind power based on super-capacitor energy storage[J]. Power System Protection and Control, 2018, 46(5): 1-7. [5] Yu Yang, Mi Zengqiang, Guo Xudong, et al.Low speed control and implementation of permanent magnet synchronous motor for mechanical elastic energy storage device with simultaneous variations of inertia and torque[J]. IET Electric Power Appli- cations, 2016, 10(3): 172-180. [6] 郑晓明, 米增强, 余洋, 等. 机械弹性储能参数辨识自适应调速控制[J]. 电工技术学报, 2018, 33(24): 5768-5778. Zheng Xiaoming, Mi Zengqiang, Yu Yang, et al.Adaptive control strategy for speed tracking control with parameters identification for mechanical elastic energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5768-5778. [7] 米增强, 郑晓明, 余洋, 等. 机械弹性储能系统中永磁同步电机反推SVM-DTC控制[J]. 电工技术学报, 2017, 32(21): 94-102. Mi Zengqiang, Zheng Xiaoming, Yu Yang, et al.Backstepping control based SVM-DTC of PMSM for mechanical elastic energy storage system[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(21): 94-102. [8] 余洋, 郭旭东, 郑晓明, 等. 基于反推控制的机械弹性储能永磁同步电机最大转矩电流比控制[J]. 电工技术学报, 2017, 32(22): 82-90. Yu Yang, Guo Xudong, Zheng Xiaoming, et al.Backstepping control based maximum torque per ampere control of permanent magnet synchronous motor for mechanical elastic energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 82-90. [9] Munozguijosa, Manuel J, Caballero F, et al. Gen- eralized spiral torsion spring model[J]. Mechanism & Machine Theory, 2012, 51(51): 110-130. [10] 米增强, 余洋, 王璋奇, 等. 永磁电机式机械弹性储能机组及其关键技术初探[J]. 电力系统自动化, 2013, 37(1): 26-30. Mi Zengqiang, Yu Yang, Wang Zhangqi, et al.Preliminary exploration on permanent magnet motor based mechanical elastic energy storage unit and key technical issues[J]. Automation of Electric Power Systems, 2013, 37(1): 26-30. [11] 余洋. 永磁电机式机械弹性储能系统设计与控制技术研究[D]. 北京: 华北电力大学, 2016. [12] Zhang Shao, Tseng K J, Vilathgamuwa D M, et al.Design of a robust grid interface system for PMSG- based wind turbine generators[J]. IEEE Transactions on Industrial Electronics, 2010, 58(1): 316-328. [13] Li Shuhui, Haskew T A, Xu Ling.Conventional and novel control designs for direct driven PMSG wind turbines[J]. Electric Power Systems Research, 2010, 80(3): 328-338. [14] Kim H W, Kim S S, Ko H S.Modeling and control of PMSG-based variable-speed wind turbine[J]. Electric Power Systems Research, 2010, 80(1): 46-52. [15] Kokotovic P V.The joy of feedback: nonlinear and adaptive[J]. IEEE Control Systems, 2002, 12(3): 7-17. [16] Kanellakopoulos I, Kokotović P V, Morse A S.Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253. [17] 徐艳平, 雷亚洲, 马灵芝, 等. 基于反推控制的永磁同步电机新型直接转矩控制方法[J]. 电工技术学报, 2015, 30(10): 83-89. Xu Yanping, Lei Yazhou, Ma Lingzhi, et al.A novel direct torque control of permanent magnet synchronous motors based backstepping control[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 83-89. [18] 赵希梅, 吴勇慷. 基于自适应修正拉盖尔递归神经网络的永磁直线同步电机反推控制[J]. 电工技术学报, 2018, 33(10): 2392-2399. Zhao Ximei, Wu Yongkang.Backstepping control based on adaptive modified laguerre ecurrent neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2392-2399. [19] 刘栋良, 崔言飞, 赵晓丹, 等. 基于反推控制的永磁同步电动机速度的模糊控制[J]. 电工技术学报, 2014, 29(11): 38-44. Liu Dongliang, Cui Yanfei, Zhao Xiaodan, et al.Fuzzy control speed of permanent magnet synchronous motors based on backstepping control[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(11): 38-44. [20] 郭风堂, 包广清. 反推滑模控制在电磁耦合调速型风电机组中的应用研究[J]. 电机与控制应用, 2018, 45(2): 118-127. Guo Fengtang, Bao Guangqing.Maximum energy tracking of wind turbine based on electromagnetic coupler using backstepping control[J]. Electric Machines & Control Application, 2018, 45(2): 118-127. [21] 米增强, 郭旭东, 余洋. 基于参数辨识及L2增益的PMSG反步控制策略研究[J]. 系统仿真学报, 2017, 29(1): 144-153. Mi Zengqiang, Guo Xudong, Yu Yang.Parameter identification and L2 gain based backstepping control strategy for PMSG[J]. Journal of System Simulation, 2017, 29(1): 144-153. [22] 范钦珊,殷雅俊. 材料力学[M]. 北京: 清华大学出版社, 2004.