Review and Prospect of Low-Speed High-Torque Permanent Magnet Machines
Bao Xiaohua1, Liu Jiwei1, Sun Yue2, Wu Changjiang1
1. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China; 2. Anhui Wannan Electric Machine Co. Ltd Xuancheng 242500 China
Abstract:Compared with the traditional induction motor with mechanical deceleration, low-speed high-torque permanent magnet direct drive machine has distinct advantages, which has drawn more and more attention. Torque density is one of the key indicators to measure low-speed high-torque permanent magnet direct drive machine. In this paper, from the aspects of structure characteristics, application status and scientific research progress, several kinds of low-speed high-torque permanent magnet direct drive machine are introduced, such as proper fraction-slot concentrated winding PM machine, PM vernier machine, PM disc machine, transverse-flux machine and dual-stator/ dual-rotor machine. The necessity and methods of torque ripple, air-gap eccentricity, mechanical strength and temperature field are summarized. Based on the research status, the future development direction is prospected, which provides a reference for the realization of low-speed high-torque permanent magnet direct drive machine.
鲍晓华, 刘佶炜, 孙跃, 吴长江. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160.
Bao Xiaohua, Liu Jiwei, Sun Yue, Wu Changjiang. Review and Prospect of Low-Speed High-Torque Permanent Magnet Machines. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160.
[1] Crider J M, Sudhoff S D.An inner rotor flux- modulated permanent magnet synchronous machine for low-speed high-torque applications[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1247-1254. [2] Gao Yuting, Qu Ronghai, Li Dawei, et al.Design of a dual-stator LTS vernier machine for direct-drive wind power generation[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [3] Yin Xin, Fang Youtong, Huang Xiaoyan, et al.Analytical modeling of a novel vernier Pseudo- direct-drive permanent-magnet machine[J]. IEEE Transactions on Magnetics, 2017, 53(6): 16914054. [4] Zhang Bingyi, Liang Bingxue, Xu Guangren, et al.Research on variable frequency low-speed high- torque squirrel cage induction machine for elevator[C]// IEEE International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-5. [5] Mendoza-Mondragon F, Hernandez-Guzman V M, Rodriguez-Resendiz J. Robust speed control of permanent magnet synchronous motors using two- degrees-of-freedom control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6099-6108. [6] Yan Bo, Wang Xiuhe, Yang Yubo.Starting perfor- mance improvement of line-start permanent-magnet synchronous motor using composite solid rotor[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4. [7] Huang Xuzhen, Tan Qiang, Li Liyi, et al.Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density[J]. IEEE Transa- ctions on Industrial Electronics, 2017, 64(3): 2168-2177. [8] Wang Qingsong, Niu Shuangxia.Design optimization and comparative study of novel magnetic-geared permanent magnet machines[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. [9] 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 2004. [10] 王帅. 有杆采油泵低速大转矩永磁电动机直驱技术研究[D]. 沈阳: 沈阳工业大学, 2016. [11] Yin X, Pfister P D, Fang Y.A novel magnetic gear: toward a higher torque density[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [12] Tlali P M, Gerber S, Wang R J.Optimal design of an outer-stator magnetically geared permanent magnet machine[J]. IEEE Transactions on Magnetics, 2016, 52(2): 1-10. [13] Bekka N, Zaïm M E H, Bernard N, et al. A novel methodology for optimal design of fractional slot with concentrated windings[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 1153-1160. [14] Ji Jinghua, Luo Jianhua, Zhao Wenxiang, et al.Effect of circumferential segmentation of permanent magnets on rotor loss in fractional-slot concentrated- winding machines[J]. IET Electric Power Appli- cations, 2017, 11(7): 1151-1159. [15] Chen Hong, Qu Ronghai, Li Jian, et al.Comparison of interior and surface permanent magnet machines with fractional slot concentrated windings for direct- drive wind generators[C]//2014 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 2612-2617. [16] Ahsanullah K, Dutta R, Rahman M F.Analysis of low-speed IPMMs with distributed and fractional slot concentrated windings for wind energy appli- cations[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-10. [17] Liu Chunhua, Yu Jincheng, Lee Christopher.A new electric magnetic-geared machine for electric unmanned aerial vehicles[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-6. [18] Zhao Xing, Niu Shuangxia.Design of a novel parallel-hybrid-excited vernier reluctance machine with improved utilization of redundant winding harmonics[J]. IEEE Transactions on Industrial Elec- tronics, 2018, DOI: 10.1109/TIE.2018.2807397. [19] Xie Kangfu, Li Dawei, Qu Ronghai, et al.A novel permanent magnet vernier machine with halbach array magnets in stator slot opening[J]. IEEE Transa- ctions on Magnetics, 2017, 53(6): 1-5. [20] 李祥林, 程明, 邹国棠. 聚磁式场调制永磁风力发电机输出特性改善的研究[J]. 中国电机工程学报, 2015, 35(16): 4198-4206. Li Xianglin, Cheng Ming, Zou Guotang.Research on improvement of output characteristics of the flux- concentrating field-modulated permanent-magnet wind power generator[J]. Proceedings of the CSEE, 2015, 35(16): 4198-4206. [21] 李祥林, 程明, 邹国棠, 等. 聚磁式场调制永磁风力发电机工作原理与静态特性[J]. 电工技术学报, 2014, 29(11): 1-9. Li Xianglin, Cheng Ming, Zou Guotang, et al.Principle and analysis of a new flux-concentrating field-modulated permanent-magnet wind power generator[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 1-9. [22] Wang L L, Shen J X, Luk P C K, et al. Development of a magnetic-geared permanent-magnet brushless motor[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4578-4581. [23] Kim B, Lipo T A.Operation and design principles of a pm vernier motor[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3656-3663. [24] Okada K, Niguchi N, Hirata K.Analysis of a vernier motor with concentrated windings[J]. IEEE Transa- ctions on Magnetics, 2013, 49(5): 2241-2244. [25] Zou Tianjie, Li Dawei, Qu Ronghai, et al.Advanced high torque density PM vernier machine with multi working harmonics[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5295-5304. [26] Cavagnino A, Lazzari M, Profumo F, et al.A com- parison between the axial flux and the radial flux structures for PM synchronous motors[J]. IEEE Transactions on Industry Applications, 2002, 38(6): 1517-1524. [27] 卢琴芬, 范承志, 叶云岳. 新型抽油机用盘式永磁电机的磁场与力特性[J]. 浙江大学学报(工学版), 2008, 42(4): 651-655. Lu Qinfen, Fan Chengzhi, Ye Yunyue.Magnetic field and force characteristic of disc-type permanent magnet motor for novel pumping unit[J]. Journal of Zhejiang University, 2008, 42(4): 651-655. [28] Husain T, Hasan I, Sozer Y, et al.Design con- siderations of a transverse flux machine for direct- drive wind turbine applications[J]. IEEE Transactions on Industry Applications, 2018, DOI: 10.1109/TIA. 2018.2814979. [29] Pippuri J, Manninen A, Keränen J, et al.Torque density of radial, axial and transverse flux permanent magnet machine topologies[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2339-2342. [30] Guo Youguang, Zhu Jianguo, Watterson P A, et al.Development of a PM transverse flux motor with soft magnetic composite core[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 426-434. [31] Hsu Y S, Tsai M C.Development of a novel transverse flux wheel motor[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3677-3680. [32] Zhang Xiaoxu, Liu Xiao, Chen Zhe.A novel coaxial magnetic gear and its integration with permanent- magnet brushless motor[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [33] Aydin M, Gulec M.A new coreless axial flux interior permanent magnet synchronous motor with sinusoidal rotor segments[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [34] 颜建虎, 冯奕. 聚磁式横向磁通永磁盘式风力发电机设计与分析[J]. 中国电机工程学报, 2017, 37(9): 2694-2700. Yan Jianhu, Feng Yi.Design and analysis of a flux- concentrated transverse flux permanent magnet disk wind generator[J]. Proceedings of the CSEE, 2017, 37(9): 2694-2700. [35] Qu R, Lipo T A.Dual-rotor, radial-flux, toroidally wound, permanent-magnet machines[J]. IEEE Transa- ctions on Industry Applications, 2003, 39(6): 1665-1673. [36] Li Yingjie, Dheeraj Bobba, Bulent Sarlioglu.Design and optimization of a novel dual-rotor hybrid pm machine for traction application[J]. IEEE Transa- ctions on Industrial Electronics, 2018, 65(2): 1762-1771. [37] Zhao Wenliang, Byung-il Kwon, Thomas A Lipo, et al. Dual airgap stator- and rotor- permanent magnet machines with spoke-type configurations using phase- group concentrated-coil windings[J]. IEEE Transa- ctions on Industry Applications, 2017, 53(4): 3327-3335. [38] Zhu Jian, Zhao Wenxiang, Ji Jinghua, et al.Com- parative investigation of concentrated winding and vernier double-stator permanent-magnet motors[J]. International Journal of Applied Electromagnetics & Mechanics, 2016, 53(3): 387-395. [39] Carraro E, Bianchi N, Zhang S, et al.Design and performance comparison of fractional slot con- centrated winding spoke type synchronous motors with different slot-pole combinations[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2276-2284. [40] Dai N, Dutta R, Rahman M F, et al.Performance of a sensorless controlled concentrated-wound interior permanent-magnet synchronous machine at low and zero speed[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(4): 2016-2026. [41] Yokoi Y, Higuchi T, Miyamoto Y.General for- mulation of winding factor for fractional-slot concentrated winding design[J]. IET Electric Power Applications, 2016, 10(4): 231-239. [42] 郑军铭. 球磨机直驱用超低速大转矩永磁同步电动机研究[D]. 沈阳: 沈阳工业大学, 2017. [43] Xia Jiakuan, Dong Ting, Wang Chengyuan, et al.Low speed high torque PMSM design based on unequal teeth structure[C]//International Conference on Electrical Machines and Systems, Wuhan, China, 2009: 3274-3277. [44] Farshadnia M, Masood Cheema M, Pouramin A, et al.Design of optimal winding configurations for symmetrical multiphase concentrated-wound surface- mount pmsms to achieve maximum torque density under current harmonic injection[J]. IEEE Transa- ctions on Industrial Electronics, 2018, 65(2): 1751-1761. [45] Xing Zhao, Niu Shuangxia.Design and optimization of a new magnetic-geared pole-changing hybrid excitation machine[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9943-9952. [46] Shin H, Chang J.Comparison of radial force at modulating pieces in coaxial magnetic gear and magnetic geared machine[J]. IEEE Transactions on Magnetics, 2018, 54(3): 1-4. [47] Jian Linni, Shi Yujun, Liu Cheng, et al.A novel dual-permanent-magnet-excited machine for low- speed large-torque applications[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2381-2384. [48] Li X, Chau K T, Cheng M.Analysis, design and experimental verification of a field-modulated permanent-magnet machine for direct-drive wind turbines[J]. IET Electric Power Applications, 2015, 9(2): 150-159. [49] Gulec M, Aydin M.Implementation of different 2D finite element modelling approaches in axial flux permanent magnet disc machines[J]. IET Electric Power Applications, 2018, 12(2): 195-202. [50] Capponi F G, De Donato G, Borocci G, et al.Axial- flux hybrid-excitation synchronous machine: analysis, design, and experimental evaluation[J]. IEEE Transa- ctions on Industry Applications, 2014, 50(5): 3173-3184. [51] Moury S, Iqbal M T.A permanent magnet generator with PCB stator for low speed marine current applications[C]//2009 1st International Conference on the Developments in Renewable Energy Tech- nology, 2009, DOI: 10.1109/ICDRET.20195454203. [52] Ishikawa T, Amada S, Segawa K, et al.Proposal of a radial- and axial-flux permanent-magnet synchronous generator[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. [53] Saifee A H, Mittal A, Laxminarayan S S, et al.Design of a novel field controlled constant voltage axial flux permanent magnet generator for enhanced wind power extraction[J]. IET Renewable Power Generation, 2017, 11(7): 1018-1025. [54] Zhang Changjin, Chen Zhihui, Mei Qingxiao, et al.Application of particle swarm optimization combined with response surface methodology to transverse flux permanent magnet motor optimization[J]. IEEE Transactions on Magnetics, 2017, 53(12): 1-7. [55] Anglada J R, Sharkh S M.Analytical calculation of the torque produced by transverse flux machines[J]. IET Electric Power Applications, 2017, 11(7): 1298-1305. [56] Oh J H, Lee J H, Kang S I, et al.Analysis of a novel transverse flux type permanent magnet reluctance generator[J]. IEEE Transactions on Magnetics, 2014, 50(2): 809-812. [57] Kou Baoquan, Luo Jun, Yang Xiaobao, et al.Modeling and analysis of a transverse-flux flux- reversal motor[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 1121-1131. [58] Dalal A, Kumar P.Design, prototyping and testing of dual rotor motor for electric vehicle application[J]. IEEE Transactions on Industrial Electronics, 2018, DOI: 10.1109/TIE.2018.2795586. [59] Liu Guangwei, Qiu Guohua, Jin Shi, et al.Study on counter-rotating dual-rotor permanent magnet motor for underwater vehicle propulsion[J]. IEEE Transa- ctions on Applied Superconductivity, 2018, 28(3): 1-5. [60] Dalal A, Nekkalapu S, Kumar P.2-D Analytical Subdomain Model for Hybrid Dual-Rotor Motor[J]. IEEE Transactions on Magnetics, 2016, 52(6): 1-9. [61] Chen Hao, Liu Xiangdong, Zhao Jing, et al.Magnetic coupling characteristics investigation of a dual-rotor fault-tolerant PMSM[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 362-372. [62] Zhao F, Lipo T A, Kwon B.A novel dual-stator axial-flux spoke-type permanent magnet vernier machine for direct-drive applications[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [63] Niu Shuangxia, Ho S L, Fu W N.A novel direct-drive dual-structure permanent magnet machine[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2036-2039. [64] 鲍晓华, 吴长江, 胡云鹏, 等. 一种优化表插式永磁电机性能的方法[J]. 电工技术学报, 2018, 33(2): 238-244. Bao Xiaohua, Wu Changjiang, Hu Yunpeng, et al.A method for optimizing performance of inset permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 238-244. [65] Xia Changliang, Ji Bingnan, Yan Yan.Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral- resonant controller[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2123-2134. [66] Sopanen J, Ruuskanen V, Nerg J, et al.Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 3859-3867. [67] Cistelecan M V, Popescu M, Popescu M.Study of the number of slots/pole combinations for low speed permanent magnet synchronous generators[C]// Electric Machines & Drives Conference, IEMDC '07. IEEE, Antalya, Turkey, 2007: 1616-1620. [68] Valavi M, Nysveen A, Nilssen R, et al.Influence of pole and slot combinations on magnetic forces and vibration in low-speed pm wind generators[J]. IEEE Transactions on Magnetics, 2014, 50(5): 1-11. [69] Li Y X, Zhu Z Q.Cogging torque and unbalanced magnetic force prediction in PM machines with axial-varying eccentricity by superposition method[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. [70] Zhu Z Q, Wu L J, Mohd Jamil M L. Influence of pole and slot number combinations on cogging torque in permanent-magnet machines with static and rotating eccentricities[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3265-3277. [71] Yang Haodong, Chen Yangsheng.Influence of radial force harmonics with low mode number on electro- magnetic vibration of PMSM[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 38-45. [72] Kolgiri S G, Martande S D, Motgi N S.Stress analysis for rotor shaft of electric motor[J]. Inter- national Journal of Application or Innovation in Engineering & Management (IJAIEM), 2013, 7(2): 136-141. [73] 邓瑞清, 虎刚, 王全武. 辐条式高速转子轴向挠性振动特性[J]. 中国空间科学技术, 2010, 30(4): 44-51. Deng Ruiqing, Hu Gang, Wang Quanwu.Axial flexible vibration characteristics of high speed spoked rotors in inertia actuator[J]. Chinese Space Science & Technology, 2010, 30(4): 44-51. [74] Lee K J, Kumai S, Arai T, et al.Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding[J]. Materials Science & Engineering A, 2007, 471(1-2): 95-101. [75] Garbatov Y, Tekgoz M, Soares C G.Uncertainty assessment of the ultimate strength of a stiffened panel[C]//Advances in Marine Structures-Proceedings of the 3rd International Conference on Marine Structures, London, 2011: 659-668. [76] 何海翔, 陈志辉, 梅庆枭, 等. 聚磁型无源转子横向磁通永磁电机电磁力及转子机械强度的分析[J].电工技术学报, 2017, 32(15): 10-16. He Haixiang, Chen Zhihui, Mei Qingxiao, et al.Analysis of electromagnetic force and rotor mechanical strength on flux-concentrating transverse flux PM machine with passive rotor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 10-16. [77] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. Chen Ping, Tang Renyuan, Tong Wenming, et al.Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9. [78] 赵振奎, 李勇, 徐永向, 等. 低速永磁力矩电动机发热的仿真分析与实验测试[J]. 微特电机, 2009, 37(11): 15-17. Zhao Zhenkui, Li Yong, Xu Yongxiang, et al.Thermal simulation analysis and test of low speed permanent magnet torque motor[J]. Small & Special Electrical Machines, 2009, 37(11): 15-17. [79] Han Xueyan, Yang Fei, Tang Renyuan, et al.Research on model of temperature field and structure optimization for disk type permanent magnet synchronous motor[C]//IEEE International Conference on Electrical and Control Engineering, Wuhan, China, 2010: 5892-5895. [80] Boglietti A, Cossale M, Vaschetto S, et al.Thermal conductivity evaluation of fractional-slot con- centrated winding machines[J]. IEEE Transactions on Industry Applications, 2016, 53(3): 1-7. [81] 陈丽香, 解志霖, 王雪斌. 低速大转矩永磁电机的转子散热问题[J]. 电工技术学报, 2017, 32(7): 40-48. Chen Lixiang, Xie Zhilin, Wang Xuebin.The rotor heat dissipation problem of low speed and high torque permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 40-48. [82] Howey D A, Holmes A S, Pullen K R.Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines[J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1716-1723. 通信作者:鲍晓华男,1972年生,博士,教授,博士生导师,研究方向为电机设计理论和技术等.E-mail: baoxh@hfut.edu.cn