Diagnosis of Bearing Fault in Induction Motors Using Hilbert Demodulation Approach
Song Xiangjin1, 2, ; Wang Zhuo1, 2, ;Hu Jingtao1, 2, ;Zhu Hongyu3
1. Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110016 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. School of Electronic and Information Engineering University of Science and Technology Liaoning Anshan 114051 China
Abstract:Because of the influence of the spectral leakage of the main frequency component, eccentricity harmonics and power supply noise, motor current signature analysis (MCSA) is unable to detect the bearing outer raceway fault when an induction motor (IM) operates under the light load conditions. In this paper, a bearing fault diagnosis method based on the squared envelope approach of the motor stator current using Hilbert demodulation technique was proposed. An analytical signal corresponding to the stator current signal was constructed first using Hilbert transform and then a squared envelope was obtained from the analytical signal. Second, the Fast Fourier Transform (FFT) of the squared envelope was investigated. Finally, the motor bearing failure was determined based on whether the characteristic fault frequency fof could be found in the squared envelope spectrum or not. The proposed method can be used to detect the characteristic fault frequency fof directly instead of detecting the sideband components around the supply frequency |f1±fof| as used in traditional MCSA. Thus, the proposed approach can significantly reduce the negative influence of the spectral leakage of the main frequency component spectral and the power supply noise. The experimental results under different load conditions clearly prove the effectiveness and stability of the proposed method.
[1] Leite V C M N, Da Silva J G B, Veloso G F C, et al. Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1855-1865. [2] 曹朋朋, 张兴, 杨淑英, 等. 异步电机基于MRAC的转子时间常数在线辨识算法的统一描述[J]. 电工技术学报, 2017, 32(19): 62-70. Cao Pengpeng, Zhang Xing, Yang Shuying, et al.Unified description of MRAC-based online rotor time constant identification algorithm for induction motors[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 62-70. [3] 刘璐, 杜旭东, 王晓年. 考虑磁饱和的感应电机MTPA转矩控制[J]. 电工技术学报, 2017, 32(23): 42-50. Liu Lu, Du Xudong, Wang Xiaonian.MTPA torque control of induction motor considering magnetic saturation[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 42-50. [4] Li Dezhi, Wang W, Ismail F.A spectrum synch technique for induction motor health condition monitoring[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1348-1355. [5] Maruthi G S, Hegde V.Application of MEMS Accelerometer for detection and diagnosis of multiple faults in the roller element bearings of three phase induction motor[J]. IEEE Sensors Journal, 2016, 16(1): 145-152. [6] He Wangpeng, Zi Yanyang, Chen Binqiang, et al. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform[J]. Mechanical Systems and Signal Processing, 2015, 54-55: 457-480. [7] 潘作为, 梁双印, 李惊涛, 等. 基于复数小波多尺度包络分析的风机滚动轴承故障特征提取[J]. 中国电机工程学报, 2015, 35(16): 4147-4152. Pan Zuowei, Liang Shuangyin, Li Jingtao, et al.Application of the complex wavelet analysis in fault feature extraction of blower rolling bearing[J]. Proceedings of the CSEE, 2015, 35(16): 4147-4152. [8] 杨明, 董传洋, 徐殿国. 基于电机驱动系统的齿轮故障诊断方法综述[J]. 电工技术学报, 2016, 31(4): 58-63. Yang Ming, Dong Chuanyang, Xu Dianguo.Review of gear fault diagnosis methods based on motor drive system[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 58-63. [9] Imaouchen Y, Alkama R, Thomas M.Bearing fault detection using motor current signal analysis based on wavelet packet decomposition and Hilbert envelope[C]// AVE2014-4th Colloque Analyse Vibratoire Experimentale/ Experimental Vibration Analysis, Blois, France, 2014: 1-5. [10] Amirat Y, Choqueuse V, Benbouzid M, et al.Hilbert transform-based bearing failure detection in DFIG-Based wind turbines[J]. International Review of Electrical Engineering, 2011, 6(3): 1249-1256. [11] Zarei J, Poshtan J.An advanced Park's vectors approach for bearing fault detection[J]. Tribology International, 2009, 42(2): 213-219. [12] 薛征宇, 邱赤东, 王宁, 等. 基于Park矢量的电动机轴承故障检测方法[J]. 轴承, 2012(4): 50-55. Xue Zhengyu, Qiu Chidong, Wang Ning, et al.Detection method for faults of motor bearings based on Park’s vector[J]. Bearing, 2012(4): 50-55. [13] Salem S B, Bacha K, Chaari A.Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform[J]. ISA Transactions, 2012, 51(5): 566-572. [14] 杨江天, 赵明元, 张志强, 等. 基于定子电流小波包分析的牵引电机轴承故障诊断[J]. 铁道学报, 2013(2): 32-36. Yang Jiangtian, Zhao Mingyuan, Zhang Zhiqiang, et al.Traction motor bearing fault detection via wavelet packet analysis of stator currents[J]. Journal of the China Railway Society, 2013(2): 32-36. [15] Li B, Chow M Y, Tipsuwan Y, et al.Neural-network-based motor rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1060-1069. [16] Schiltz R L.Forcing frequency identification of rolling element bearings[J]. Sound and Vibration, 1990, 24(5): 16-19. [17] Schoen R R, Habetler T G, Karmran F, et al.Motor bearing damage detection using stator current monitoring[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1274-1279. [18] 车香芝, 胡静涛, 郭前进. 基于齿谐波检测的无速度传感器感应电机的转速估计[C]//2008中国仪器仪表与测控技术报告大会, 湘潭, 湖南, 2008: 414-417. Che Xiangzhi, Hu Jingtao, Guo Qianjin.An slot harmonics detection-based approach to speed estimation in a sensorless induction motor[C]//2018 China Instrumentation and Measurement Control Technology Conference, Xiangtan, Hunan, 2008: 414-417. [19] 喻敏, 王斌, 陈绪轩, 等. 同步挤压小波变换在电力系统低频振荡模态参数提取中的应用[J]. 电工技术学报, 2017, 32(6): 14-20. Yu Min, Wang Bin, Chen Xuxuan, et al.Application of synchrosqueezed wavelet transform for extraction of the oscillatory parameters of low frequency oscillation in power systems[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 14-20. [20] 朱永利, 贾亚飞, 王刘旺, 等. 基于改进变分模态分解和Hilbert变换的变压器局部放电信号特征提取及分类[J]. 电工技术学报, 2017, 32(9): 221-235. Zhu Yongli, Jia Yafei, Wang Liuwang, et al.Feature extraction and classification on partial discharge signals of power transfromers based on improved variational mode decomposition and Hiblert transform[J]. Trasactions of China Electrotechnical Society, 2017, 32(9): 221-235.