Interface of Epoxy Resin Composites, and Its Influence on Electrical Performance
Wu Zijian1,2, Wang Chen2, Zhang Mingyan1,2, Pei Xin2, Jiang Peng2
1. Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education Harbin University of Science and Technology Harbin 150040 China; 2. Department of Material Science and Technology Harbin University of Science and Technology Harbin 150040 China
Abstract:Carbon nanotubes (MWCNTs) were individually treated with mixed acids, epoxy macromolecules, and silane coupling agents, and the products were marked as C-MWCNTs, E-MWCNTs, Si-MWCNTs. The epoxy resin composites were made by blending MWCNTs, organic montmorillonite (O-MMT) and epoxy resin (EP). The influence of C-MWCNTs, E-MWCNTs, Si-MWCNTs on the interface of composites was investigated by analyzing the impact test data of samples, the section morphology of the composites and the infrared spectrum of MWCNTs. The influence of interface on the electrical property of composites was discussed by using the interface barrier model. The results show that the interface bonding strength between Si-MWCNTs (or E-MWCNTs) and epoxy resin is greater than that of C-MWCNTs. When the mass fraction of the MWCNTs is the same, the interface of Si-MWCNTs/EP is larger than the that of E-MWCNTs/EP. When Si-MWCNTs is dispersed evenly in the matrix, with the adding of Si-MWCNTs, free volume increases in Si-MWCNTs/EP, the bonding area expands, which enhances the restriction of bonding area on dipole polarization. The above two aspects jointly promote the reduction of dielectric constant and dielectric loss of Si-MWCNTs/EP. With the increase of MWCNTs, the transition region expands, the trap density increases, so the breakdown strength of Si-MWCNTs/EP composites is improved. The O-MMT weakens the agglomeration of MWCNTs in the matrix and reduces the conductivity of MWCNTs/O-MMT/EP.
[1] 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. Luo Yang, Wu Guangning, Peng Jia, et al.Research progress on the interfacial properties of polymer nanocomposites[J]. High Voltage Engineering, 2012, 38(9): 2455-2464. [2] 常文治, 阎春雨, 李成榕, 等. 硅橡胶/胶联聚乙烯界面金属颗粒沿面放电严重程度的评估[J]. 电工技术学报, 2015, 30(24): 245-254. Chang Wenzhi, Yan Chunyu, Li Chengrong, et al.Assessment of creeping discharge initiated by metal particles on the silicone rubber/XLPE interface in cable joints[J]. Transactions of China Electro- technical Society, 2015, 30(24): 245-254. [3] 杨明亮, 周凯, 吴科, 等. 基于纳米SiO2复合填充的交联聚乙烯电缆水树修复新技术[J]. 电工技术学报, 2015, 30(14): 481-487. Yang Minglang, Zhou Kai, Wu Ke, et al.A new rejuvenation technology based on formation of nano-SiO2 composite fillers for water tree aged XLPE cables[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 481-487. [4] Bernardo E, Fiocco L, Parcianello G, et al.Advanced ceramics from preceramic polymers modified at the nano-scale: a review[J]. Materials, 2014, 7(3): 1927-1956. [5] Khan F, Kausar A, Siddiq M.A review on properties and fabrication techniques of polymer/carbon nanotube composites and polymer intercalated buckypapers[J]. Polymer-Plastics Technology and Engineering, 2015, 54(14): 1524-1539. [6] Wan Q, Liu M, Tian J, et al.Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP[J]. Polymer Chemistry, 2015, 6(10): 1786-1792. [7] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [8] 李盛涛, 聂永杰, 闵道敏, 等. 固体电介质真空沿面闪络研究进展[J]. 电工技术学报, 2017, 32(8): 1-9. Li Shengtao, Nei Yongjie, Min Daomin, et al.Research progress on vacuum surface flashover of solid dielectrics[J]. Transactions of China Electro- technical Society, 2017, 32(8): 1-9. [9] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electro- technical Society, 2011, 26(3): 1-12. [10] Tsafack T, Alred J M, Wise K E, et al.Exploring the interface between single-walled carbon nanotubes and epoxy resin[J]. Carbon, 2016, 105: 600-606. [11] Yu K, Wang M, Qian K, et al.The synergy effect of Graphene/SiO2, hybrid materials on reinforcing and toughening epoxy resin[J]. Fibers and Polymers, 2016, 17(3): 453-459. [12] Zhang B, Zhang G, Wang Q, et al. Suppression of surface charge accumulation on Al2O3-filled epoxy resin insulator under dc voltage by direct fluor- ination[J]. Aip Advances, 2015, 5(12): 127207-1- 127207-12. [13] 张明艳, 隋珊, 陈金玉, 等. 功能化碳纳米管/环氧树脂复合材料性能研究[J]. 电工技术学报, 2014, 29(4): 97-102. Zhang Mingyan, Sui Shan, Chen Jinyu, et al.Study of properties of functional multi-walled carbon nanotubes/epoxy nanocomposites[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 97-102. [14] Lewis T J.Nanometric dielectrics[J]. IEEE Transa- ctions on Dielectrics & Electrical Insulation, 1994, 1(5): 812-825. [15] Lewis T J.Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transa- ctions on Dielectrics & Electrical Insulation, 2004, 11(5): 739-753. [16] Lewis T J.Interfaces and nanodielectrics are synonymous[C]//IEEE International Conference on Solid Dielectrics, Toulouse, France, 2004: 792-795. [17] Tanaka T, Montanari G C, Mulhaupt R.Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2004, 11(5): 763-784. [18] Tanaka T.Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2005, 12(5): 914-928. [19] Tanaka T, Ohki Y, Ochi M, et al.Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2007, 15(1): 81-89. [20] Tanaka T, Yazawa T, Ohki Y, et al.Frequency accelerated partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods[C]//IEEE International Conference on Solid Dielectrics, Winchester, UK, 2007: 337-340. [21] Raetzke S, Kindersberger J.The effect of interphase structures in nanodielectrics[J]. IEEJ Transactions on Fundamentals & Materials, 2006, 126(11): 1044-1049. [22] Raetzke S, Kindersberger J.Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2, nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2010, 17(2): 607-614. [23] Li S, Yin G, Bai S, et al.A new potential barrier model in epoxy resin nanodielectrics[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(18): 1535-1543. [24] Velazquez-Castillo R, Reyes-Gasga J, Garcia- Gutierrez D I, et al. Nanoscale characterization of nautilus shell structure: An example of natural self-assembly[J]. Journal of Materials Research, 2006, 21(6): 1484-1489. [25] Katti K S, Katti D R, Pradhan S M, et al.Platelet interlocks are the key to toughness and strength in nacre[J]. Journal of Materials Research, 2005, 20(5): 1097-1100. [26] 孙婷婷, 胡春秀, 胡庆娟, 等. 蒙脱土改性环氧树脂复合材料的制备及性能研究[J]. 绝缘材料, 2005(2): 1-3. Sun Tingting, Hu Chunxiu, Hu Qingjuan, et al.Study on preparation and properties of organic montmo- rillonite modified epoxy composites[J]. Insulating Material, 2005(2): 1-3.