Abstract:Power quality disturbance (PQD) data based on compressed sensing (CS) is subjected to sparse analysis mostly by using the DFT basis. However, this method incurs the problem of spectrum leakage, which reduces the sparseness of the original data, leads to overestimation of the sparseness in the subsequent reconstruction algorithm. In light of the above problem, based on the DFT sparse analysis of PQD signals, an improved reconstruction algorithm immune to spectrum leakage is proposed. Firstly, the amplitude spectra of four typical PQD models are theoretically deduced, and the relationship between the sparse characteristics of each model and the related parameters is analyzed in detail. Secondly, on the basis of this, the sparse adaptive march pursuit (SAMP) algorithm is improved and the concept of spectral energy difference is proposed. The spectral energy difference can effectively describe the change value of signal spectrum energy during adjacent reconstruction iteration. When the difference is used as the iterative termination condition of the SAMP algorithm, sparseness overestimation caused by spectrum leakage can be avoided and the operation efficiency of the algorithm can be improved. Finally, the contrast experiments have verified the superiority of the improved SAMP algorithm proposed in this paper.
刘嫣, 汤伟, 刘宝泉. 基于压缩感知的电能质量扰动数据稀疏分析与改进重构算法[J]. 电工技术学报, 2018, 33(15): 3461-3470.
Liu Yan, Tang Wei, Liu Baoquan. Data Sparse Analysis and Improved Reconstruction Algorithm of Power Quality Disturbance Based on Compressed Sensing. Transactions of China Electrotechnical Society, 2018, 33(15): 3461-3470.
[1] 陈晓静, 李开成, 肖剑, 等. 一种实时电能质量扰动分类方法[J]. 电工技术学报, 2017, 32(3): 45-54. Chen Xiaojing, Li Kaicheng, Xiao Jian, et al.A method real-time power quality disturbance classification[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 45-54. [2] 黄南天, 彭华, 徐殿国, 等. 主动配电网电能质量信号高效压缩[J]. 电工技术学报, 2015, 30(增刊2): 182-188. Huang Nantian, Peng Hua, Xu Dianguo, et al.High efficiency power quality data compression in active disturbance network[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 182-188. [3] 张逸, 林焱, 吴丹岳. 电能质量监测系统研究现状与发展趋势[J]. 电力系统保护与控制, 2015, 43(2): 138-147. Zhang Yi, Lin Yan, Wu Danyue.Current status and development trend of power quality monitoring system[J]. Power System Protection and Control, 2015, 43(2): 138-147. [4] 黄南天, 徐殿国, 刘晓胜, 等. 基于模式相似性测度的电能质量数据压缩算法[J]. 电工技术学报, 2011, 26(10): 39-46. Huang Nantian, Xu Dianguo, Liu Xiaosheng, et al.Power quality data compression based on pattern similarity measurement[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 39-46. [5] 刘博, 刘晓胜, 徐殿国. 基于新距离测度的电能质量测量数据压缩算法[J]. 电工技术学报, 2013, 28(9): 130-135. Liu Bo, Liu Xiaosheng, Xu Dianguo.Power quality measuring data compression based on new distance measurement[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 130-135. [6] 管春, 周雒维, 卢伟国, 等. 基于图像平滑算法的电能质量数据压缩算法[J]. 电力自动化设备, 2011, 31(8): 77-80. Guan Chun, Zhou Luowei, Lu Weiguo, et al.Power quality data compression based on image smoothing algorithm[J]. Electric Power Automation Equipment, 2011, 31(8): 77-80. [7] Donoho D.Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1280-1306. [8] Candes E, Wakin M B.An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [9] 朱云芳, 戴朝华, 陈维荣, 等. 压缩感知理论及其电能质量应用与展望[J]. 电力系统及其自动化学报, 2015, 27(1): 80-85. Zhu Yunfang, Dai Zhaohua, Chen Weirong, et al.Present status and prospect on compressed sensing in power system[J]. Proceedings of the CSU-EPSA, 2015, 27(1): 80-85. [10] 李珅, 马彩文, 李艳, 等. 压缩感知重构算法综述[J]. 红外与激光工程, 2013, 42(增刊1): 225-232. Li Shen, Ma Caiwen, Li Yan, et al.Survey on reconstruction algorithm based on compressive sensing[J]. Infrared and Laser Engineering, 2013, 42(S1): 225-232. [11] Chakraborty S, Chatterjee A, Goswami S K, et al.A sparse representation based approach for recognition of power system transients[J]. Engineering Application of Artificial Intelligence, 2014, 30: 137-144. [12] 孙毅, 许鹏, 武昕, 等. 面向用电侧电能质量监测的时压缩感知方法[J]. 电网技术, 2015, 39(8): 2352-2357. Sun Yi, Xu Peng, Wu Xin, et al.A power quality monitoring oriented time-space compressed sensing method[J]. Power System Technology, 2015, 39(8): 2352-2357. [13] 侯世英, 张文玉, 孙韬, 等. 遗传优化时频参数的电能质量扰动匹配特征分析[J]. 中国电机工程学报, 2013, 33(28): 107-113. Hou Shiying, Zhang Wenyu, Sun Tao, et al.Power quality disturbance analysis using time-frequency atom decomposition optimized by genetic algorithm[J]. Proceedings of the CSEE, 2013, 33(28): 107-113. [14] 方红, 杨海蓉. 贪婪算法与压缩感知理论[J]. 自动化学报, 2011, 37(12): 1414-1416. Fang Hong, Yang Hairong.Greedy algorithms and compressed sensing[J]. Acta Automatic Sinica, 2011, 37(4): 1414-1416. [15] 杨真真, 杨震, 孙林慧. 信号压缩重构的正交匹配追踪类算法综述[J]. 信号处理, 2013, 29(4): 486-496. Yang Zhenzhen, Yang Zhen, Sun Linhui.A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction[J]. Journal of Signal Processing, 2013, 29(4): 486-496. [16] 吴迪, 王奎民, 赵玉新, 等. 分段正则化化正交匹配追踪算法[J]. 光学精密工程, 2014, 22(5): 1396-1402. Wu Di, Wang Kuimin, Zhao Yuxin, et al.Stagewise regularized orthogonal matching pursuit algorithm[J]. Optics and Precision Engineering, 2014, 22(5): 1396-1402. [17] 刘毅, 周雒维, 冯浩. 电能质量监测网录波数据压缩方法[J]. 电网技术, 2010, 34(3): 199-203. Liu Yi, Zhou Luowei, Feng Hao.Method for compressing recorded data from power quality monitoring network[J]. Power System Technology, 2010, 34(3): 199-203. [18] 刘国海, 吴翃轩, 沈跃. 正则化自适应匹配追踪电能质量数据重构方法[J]. 仪器仪表学报, 2015, 36(8): 1838-1844. Liu Guohai, Wu Hongxuan, Shen Yue.Novel reconstruction method of power quality data based on regularized adaptive matching pursuit algorithm[J]. Chinese Jouranl of Scientific Instrument, 2015, 36(8): 1838-1844. [19] Do T T, Lu Gan, Nguyen N, et al.Sparsity adaptive matching pursuit algorithm for practical campressed sensing[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 107-121. [20] 陈雷, 郑德忠, 廖文喆. 基于压缩感知的含扰电能质量信号压缩重构方法[J]. 电工技术学报, 2016, 31(8): 163-170. Chen Lei, Zheng Dezhong, Liao Wenzhe.Method based on compressed sensing for compression and reconstruction of power quality signals with disturbances[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 163-170. [21] Zhang Ruoyu, Zhao Honglin.An improved sparsity estimation variable step-size matching pursuit algorithm[J]. Journal of Southeast University (English Edition), 2016, 32(2): 164-169. [22] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662. Jiao Licheng, Yang Shuyuan, Liu Fang, et al.Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662. [23] 杨挺, 袁博, 徐明玉. 基于压缩感知的微网谐波分析方法[J].天津大学学报(自然科学与工程技术版), 2016, 49(5): 480-484. Yang Ting, Yuan Bo, Xu Mingyu.Analysis method of harmonic in microgrid based on compressed sensing[J]. Journal of Tianjin University, 2016, 49(5): 480-484.