电工技术学报  2018, Vol. 33 Issue (1): 82-91    DOI: 10.19595/j.cnki.1000-6753.tces.161518
电机与电器 |
基于电流信号特征的弓网电弧识别方法
王智勇1, 2, 郭凤仪1, 冯晓丽1, 王玉婷1, 陈程1, 3
1. 辽宁工程技术大学电气与控制工程学院 葫芦岛 125105;
2. 辽宁工程技术大学安全科学与工程学院 葫芦岛 125105;
3. 国网内蒙古东部电力有限公司物资分公司 呼和浩特 010020
Recognition Method of Pantograph Arc Based on Current Signal Characteristics
Wang Zhiyong1, 2, Guo Fengyi1, Feng Xiaoli1, Wang Yuting1, Chen Cheng1, 3
1. Faulty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China;
2. College of Safety Science and Engineering Liaoning Technical University Huludao 125105 China;
3. State Grid East Inner Mongolia Electric Power Corporation Limited Hohhot 010020 China
全文: PDF (634 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 弓网电弧已成为电力机车安全运行的隐患,及时识别弓网电弧对于评价受流质量、调控弓网电弧、指导线路检修具有重要意义。该文开展了不同条件的弓网系统受流特性实验,将系统受流分为正常受流和电弧受流两种状态。提出一种基于回路电流和支持向量机(SVM)的弓网电弧在线识别方法及其工程实现方案。采用改进的F-score算法选择回路电流的平均值、标准差和相关系数作为弓网电弧的典型特征,利用svmtrain函数创建SVM模型,利用网格搜索算法优化SVM的径向基核函数。实验表明,该方法能够有效识别弓网电弧。接触压力、滑动速度和接触电流以及燃弧时间、电流采样频率均会影响弓网电弧的识别准确率。燃弧时间对识别准确率的影响较大,相同条件下燃弧时间越长,识别准确率越高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智勇
郭凤仪
冯晓丽
王玉婷
陈程
关键词 弓网电弧改进的F-score算法网格搜索支持向量机模式识别    
Abstract:Pantograph arc has become a serious hidden trouble to the safety operation of train. It’s of great significance to recognize timely pantograph arc for evaluating current collection quality, controlling arc and guiding maintenance. Current collection experiments under different conditions were carried out. The current collection status was divided into normal collection status and arc collection status. A kind of on-time recognition method of pantograph arc based on current signal and support vector machine (SVM) was proposed. An engineering implementation method was briefly introduced. The mean value, standard deviation and correlation coefficient of current were selected by the improved F-score (I-F-score) algorithm as typical characteristics of pantograph arc. The SVM model was established by using svmtrain function with Matlab software and the parameters of radial basis function were optimized by using grid search method. Lots of testing results showed that the suggested method can identify pantograph arc effectively. Some factors such as contact pressure, sliding speed, contact current, arc duration and sample rate have certain effects on recognition accuracy. Arc duration has larger effect on the recognition accuracy. The longer the arc duration, the higher the recognition accuracy is.
Key wordsPantograph arc    improved F-score algorithm    grid search    support vector machine    pattern    recognition   
收稿日期: 2016-09-14      出版日期: 2018-01-16
PACS: TM501  
基金资助:国家自然科学基金(51277090)、辽宁省教育厅重点实验室基础研究(LZ2014024)、辽宁省教育厅基金(LJYL015)和辽宁工大第五批生产技术问题创新研究基金(20160054T)资助项目
作者简介: 王智勇 男,1982年生,博士研究生,讲师,研究方向为电接触理论及其应用。E-mail:wangzhiyong_office@163.com(通信作者);郭凤仪 男,1964年生,教授,博士生导师,研究方向为电接触理论及其应用、智能电器。E-mail:fyguo64@126.com
引用本文:   
王智勇, 郭凤仪, 冯晓丽, 王玉婷, 陈程. 基于电流信号特征的弓网电弧识别方法[J]. 电工技术学报, 2018, 33(1): 82-91. Wang Zhiyong, Guo Fengyi, Feng Xiaoli, Wang Yuting, Chen Cheng. Recognition Method of Pantograph Arc Based on Current Signal Characteristics. Transactions of China Electrotechnical Society, 2018, 33(1): 82-91.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.161518          https://dgjsxb.ces-transaction.com/CN/Y2018/V33/I1/82