Abstract:This paper has described the basic principle of finite control set model predictive control (FCS-MPC) in power electronics, analyzed and generalized the problems for practical application based on three basic elements, and compared controller structure, dynamic performance and steady performance with the conventional control methods. The research status at home and abroad on FCS-MPC is summarized from these aspects: model mismatch, cost function design, inconstant switch frequency, heavy computation, and so on. Finally, some new ideas, the outlook and new trends for further research are put forward.
柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22): 58-69.
Liu Zhifei, Du Guiping, Du Fada. Research Status and Development Trend of Finite Control Set Model Predictive Control in Power Electronics. Transactions of China Electrotechnical Society, 2017, 32(22): 58-69.
[1] Richalet J, Rault A, Testud J L, et al. Model predictive heuristic control: applications to industrial processes[J]. Automatica, 1978, 14(5): 413-428. [2] Zheng Tao. Model predictive control[M]. Rijeka, Croatia: Sciyo, 2010. [3] 张明锐, 李元浩, 欧阳丽, 等. 基于混杂系统DC-DC变换器的永磁风电并网系统直流母线电压稳定控制[J]. 电工技术学报, 2015, 30(4): 62-69. Zhang Mingrui, Li Yuanhao, Ouyang Li, et al. DC bus voltage stability control of DC-DC converter in the permanent magnet wind power grid-connected system based on the hybrid system[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 62- 69. [4] Alur R, Courcoubetis C, Halbwachs N, et al. The algorithmic analysis of hybrid systems[J]. Theoretical Computer Science, 1995, 138(1): 3-34. [5] Preindl M, Schaltz E. Sensorless model predictive direct current control using novel second order PLL- observer for PMSM drive systems[J]. IEEE Transa- ctions on Industrial Electronics, 2011, 58(9): 4087- 4095. [6] Mariethoz S, Beccuti A G, Papafortiou G, et al. Sensorless explicit model predictive control of the DC-DC Buck converter with inductor current limitation[C]//Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, 2008: 1710-1715. [7] Rodriguez J, Pontt J, Silva C, et al. Predictive control of three-phase inverter[J]. Electronics Letters, 2004, 40(9): 561-562. [8] Kouro S, Cortes P, Vargas R, et al. Model predictive control—a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [9] 王萌, 施艳艳, 沈明辉, 等. 三相电压型整流器模型电压预测控制[J]. 电工技术学报, 2015, 30(16): 49-55. Wang Meng, Shi Yanyan, Shen Minghui, et al. Model voltage predictive control for three-phase voltage source rectifier[J]. Transactions of China Electro- technical Society, 2015, 30(16): 49-55. [10] 韩建定, 齐蓉, 雷晓犇, 等. 三相逆变电路的离线模型预测控制研究[J]. 电工技术学报, 2016, 31(15): 163-169. Han Jianding, Qi Rong, Lei Xiaoben, et a1. The off-line model predictive control for three-phase inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 163-169. [11] 张虎, 张永昌, 杨达维. 基于双矢量模型预测直接功率控制的双馈电机并网及发电[J]. 电工技术学报, 2016, 31(5): 69-76. Zhang Hu, Zhang Yongchang, Yang Dawei. Two vectors based model predictive direct power control of doubly fed induction generator for grid connection and power regulation[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 69-76. [12] 张虎, 张永昌, 夏波, 等. 基于空间矢量调制的感应电机无速度传感器模型预测磁链控制[J]. 电工技术学报, 2017, 32(3): 97-104. Zhang Hu, Zhang Yongchang, Xia Bo, et a1. Speed sensorless model predictive flux control of induction motor drives based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 97-104. [13] 朱玲, 符晓巍, 胡晓波, 等. 模块化多电平变流器HVDC系统的模型预测控制[J]. 电力系统保护与控制, 2014, 42(16): 1-8. Zhu Ling, Fu Xiaowei, Hu Xiaobo, et al. Model predictive control of modular multilevel converter for HVDC system[J]. Power System Protection and Control, 2014, 42(16): 1-8. [14] 梁营玉, 张涛, 刘建政, 等. 模型预测控制在MMC-HVDC中的应用[J]. 电工技术学报, 2016, 31(1): 128-138. Liang Yingyu, Zhang Tao, Liu Jianzheng, et al. The applications of the model predictive control for MMC-HVDC[J]. Transactions of China Electro- technical Society, 2016, 31(1): 128-138. [15] Rodriguez J, Kazmierkowski M P, Espinoza J R, et al. State of the art of finite control set model predictive control in power electronics[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1003-1016. [16] Young H A, Perez M A, Rodriguez J, et al. Assessing finite-control-set model predictive control: acompa- rison with a linear current controller in two-level voltage source inverters[J]. IEEE Industrial Elec- tronics Magazine, 2014, 8(1): 44-52. [17] Vazquez S, Leon J I, Franquelo L G, et al. Model predictive control: are view of its applications in power electronics[J]. IEEE Industrial Electronics Magazine, 2014, 8(1): 16-31. [18] Bordons C, Montero C. Basic principles of MPC for power converters: bridging the gap between theory and practice[J]. IEEE Industrial Electronics Magazine, 2015, 9(3): 31-43. [19] Bogado B, Barrero F, Arahal M, et al. Sensitivity to electrical parameter variations of predictive current control in multiphase drives[C]//Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013: 5215-5220. [20] Xia Changliang, Wang Meng, Song Zhanfeng. Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 459-471. [21] Rojas C A, Rodríguez J, Villarroel F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 681-690. [22] Cortes P, Rodriguez J, Silva C, et al. Delay compensation in model predictive current control of a three-phase inverter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1323-1325. [23] 常鲜戎, 殷绕方. 结合空间矢量法的D-STATCOM滞环电流控制方法[J]. 电力系统保护与控制, 2016, 44(10): 60-65. Chang Xianrong, Yin Raofang. A hysteresis current control method combined with SVPWM for D-STATCOM[J]. Power System Protection and Control, 2016, 44(10): 60-65. [24] 金石, 王中正, 王代睿, 等. 基于功率误差比较的开绕组无刷双馈发电机直接功率控制[J]. 电工技术学报, 2016, 31(7): 50-56. Jin Shi, Wang Zhongzheng, Wang Dairui, et al. Direct power control for open-winding brushless doubly-fed generator based on power error comparison[J]. Transactions of China Electro- technical Society, 2016, 31(7): 50-56. [25] 侯兆然. 基于虚拟磁链定向的PWM整流器控制方法研究[J]. 电力系统保护与控制, 2014, 42(21): 105-109. Hou Zhaoran. Research on control method of PWM rectifier based on virtual flux orientation[J]. Power System Protection and Control, 2014, 42(21): 105-109. [26] Young H A, Perez M A, Rodriguez J. Analysis of finitecontrolset model predictive current control with model parameter mismatch in a three phase inverter[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(5): 3100-3107. [27] Xia Changliang, Wang Meng, Song Zhanfeng. Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 459-471. [28] Lee K J, Park B G, Kim R Y. Robust predictive current controller based on a disturbance estimator in three-phase grid-connected inverter[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(1): 276-283. [29] Antoniewicz P, Kazmierkowski M P. Virtual flux based predictive direct power control of AC/DC converters with on-line inductance estimation[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4381-4390. [30] 王萌, 施艳艳, 沈明辉, 等. 三相电压型PWM整流器模型自校正预测控制[J]. 电工技术学报, 2014, 29(8): 151-157, 172. Wang Meng, Shi Yanyan, Shen Minghui, et al. Predictive control of three-phase voltage source PWM rectifiers based on model self-correction[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 151-157, 172. [31] Arif B, Tarisciotti L, Zanchetta P, et al. Grid parameter estimation using model predictive direct power control[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 4614-4622. [32] Cortes P, Kouro S, La Rocca B, et al. Guidelines for weighting factors design in model predictive control of power converters and drives[C]//IEEE Inter- national Conference on Industrial Technology, Gippsland, 2009: 1-7. [33] Davari S A, Khaburi D A, Kennel R. An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(3): 1540-1551. [34] Rojas C A, Rodríguez J, Villarroel F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 681-690. [35] Kwak S, Yoo S J, Park J C. Finite control set predictive control based on Lyapunov function for three-phase voltage source inverters[J]. IET Power Electronics, 2014, 7(11): 2726-2732. [36] Rodriguez J, Pontt J, Silva C A, et al. Predictive current control of a voltage source inverter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 495-503. [37] Cortes P, Rodriguez J, Quevedo E, et al. Predictive current control strategy with imposed load current spectrum[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 612-618. [38] Gregor R, Barrero F, Toral S L, et al. Predictive- space vector PWM current control method for asymmetrical dual three-phase induction motor drives[J]. IET Electric Power Applications, 2010, 4(1): 26-34. [39] Vazquez S, Leon J I, Franquelo L G, et al. Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors[C]//IEEE International Conference on Industrial Technology, Gippsland, 2009: 1-6. [40] Zhang Y, Xie W, Li Z, et al. Model predictive direct power control of PWM rectifier with duty cycle optimization[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5343-5351. [41] Hu Jiabing. Improved dead-beat predictive DPC strategy of grid-connected DC-AC converters with switching loss minimization and delay com- pensations[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 728-738. [42] Hu Jiabing, Zhu Z Q. Improved voltage-vector sequences on dead-beat predictive direct power control reversible three-phase grid-connected voltage- source converters[J]. IEEE Transactions on Power Electronics, 2008, 28(1): 254-267. [43] 宋战锋, 夏长亮, 谷鑫. 静止坐标系下基于最优时间序列的电压型PWM整流器电流预测控制[J]. 电工技术学报, 2013, 28(3): 234-240. Song Zhanfeng, Xia Changliang, Gu Xin. Stationary frame current regulation of PWM rectifiers based on predictive control[J]. Transactions of China Electro- technical Society, 2013, 28(3): 234-240. [44] 洪峰, 单任仲, 王慧贞, 等. 一种变环宽准恒频电流滞环控制方法[J]. 电工技术学报, 2009, 24(1): 115-119. Hong Feng, Shan Renzhong, Wang Huizhen, et al. A varied hysteresis-band current controller with fixed switching frequency[J]. Transactions of China Elec- trotechnical Society, 2009, 24(1): 115-119. [45] Perez M A, Cortes P, Rodriguez J. Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4354-4361. [46] Lin C, Yu J, Lai Y, et al. Simplified model-free predictive current control for interior permanent magnet synchronous motors[J]. Electronics Letters, 2016, 52(1): 59-60. [47] Zhang Y L, Lin H. Simplified model predictive current control method of voltage-source inverter[C]// IEEE International Conference on Power Electronics and ECCE, Jeju, 2011: 1726-1733. [48] Xia Changliang, Liu Tao, Shi Tingna, et al. A simplified finite-control-set model-predictive control for power converters[J]. IEEE Transactions on Industrial Informatics, 2014,10(2): 991-1002. [49] Zhang Yongchang, Xie Wei. Low complexity model predictive control—single vector-based approach[J]. IEEE Transactions on Power Electronics, 2014, 29(10): 5532-5541. [50] Ambrozic V, Fiser R, Nedeljkovic D. Direct current control-a new current regulation principle[J]. IEEE Transactions on Power Electronics, 2003, 18(1): 495-503. [51] Zhang Y C, Zhang Q. Relationship between finite control set model predictive control and direct current control for three-phase voltage source converters[C]//Electronics and Application Conference and Exposition (PEAC), Shanghai, 2014: 831-836. [52] Zhang Yongchang, Xie Wei, Li Zhengxi, et al. Low complexity model predictive power control—double vector-based approach[J]. IEEE Transactions on Power Electronics, 2014, 61(11): 5871-5880. [53] Vyncke T J, Thielemans S, Melkebeek J A. Finite-set model-based predictive control for flying-capacitor converters: cost function design and efficient FPGA implementation[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1113-1121. [54] Kwak S, Park J C. Switching strategy based on model predictive control of VSI to obtain high efficiency and balanced loss distribution[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4551-4566. [55] Aguilera R P, Lezana P, Quevedo D E. Switched model predictive control for improved transient and steady-state performance[J]. IEEE Transactions on Industrial Informatics, 2015, 11(4): 968-977. [56] Aguilera R P, Lezana P, Quevedo D E. Finite- control-set model predictive control with improved steady-state performance[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 658-666. [57] Aguilera R P, Quevedo D E. Predictive control of power converters: designs with guaranteed perfor- mance[J]. IEEE Transactions on Industrial Infor- matics, 2015, 11(1): 53-63. [58] 沈坤, 章兢, 王坚. 一种多步预测的变换器有限控制集模型预测控制算法[J]. 中国电机工程学报, 2012, 32(33): 37-44. Shen Kun, Zhang Jing, Wang Jian. A model predictive control scheme of multi-step prediction finite control set for converters[J]. Proceedings of the CSEE, 2012, 32(33): 37-44. [59] Geyer T, Quevedo D E. Multistep finite control set model predictive control for power electronics[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6836-6846. [60] Müller M A, Allgöwer F. Improving performance in model predictive control: switching cost functionals under average dwell-time[J]. Automatica, 2012, 48(2): 402-409.