A Design Method for Compensation Network Parameters with Variable Constant Current Output and its Characteristics Analysis Based on Leakage Inductance Compensation
Abstract:In this paper a new idea is proposed according to which variable constant output current can be got by compensation network parameters design for a given magnetic coupling system based on the multi-solutions of the transformer T model and the leakage inductance compensation theory. And the principle and the parameters calculation method of compensation network with different variable transfer admittance were analyzed based on electrical circuit theory. Also, the parameters design method with the consideration of the winding resistance and its frequency shifts characteristics were modeled and analyzed. The results show when the equivalent ratio n decreases the sensitive of the parameters decreases too, which can improve the load adjustment of the wireless power transfer (WPT). Finally, the prototype was constructed and the experiment results verified the theory analysis to be correct.
陈庆彬, 张伟豪, 欧阳奕欣, 陈为. 基于漏感补偿的可变恒流输出补偿网络参数确定方法及其特性分析[J]. 电工技术学报, 2017, 32(22): 22-33.
Chen Qingbin, Zhang Weihao, Ouyang Yixin, Chen Wei. A Design Method for Compensation Network Parameters with Variable Constant Current Output and its Characteristics Analysis Based on Leakage Inductance Compensation. Transactions of China Electrotechnical Society, 2017, 32(22): 22-33.
[1] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan. New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [2] Zhang W, Mi C C. Compensation topologies of high-power wireless power transfer systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4768-4778. [3] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al. Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [4] Cheng Z, Lei Y, Song K, et al. Design and loss analysis of loosely coupled transformer for an underwater high-power inductive power transfer system[J]. IEEE Transactions on Magnetics, 2014, 51(7): 1-10. [5] Fang C, Song J, Lin L, et al. Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application[C]//IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, Chongqing, 2017: 255-259. [6] Aditya K, Williamson S S. Comparative study of series-series and series-parallel compensation topolo- gies for electric vehicle charging[C]//IEEE Inter- national Symposium on Industrial Electronics, Istanbul, 2014: 426-430. [7] 张巍. 人体植入式非接触电能传输系统的研究[D].南京: 南京航空航天大学, 2010. [8] 韩洪豆. 恒流或恒压式感应无线电能传输特性研究及应用[D]. 南京: 东南大学, 2016. [9] 宋凯, 李振杰, 杜志江, 等. 变负载无线充电系统的恒流充电技术[J]. 电工技术学报, 2017, 32(13): 130-136. Song Kai, Li Zhenjie, Du Zhijiang, et al. Constant current charing techology for variable load wireless charing system[J]. Transactions of China Electro- technical Society, 2017, 32(13): 130-136. [10] 景妍妍, 曲小慧, 韩洪豆, 等. 基于可调增益恒流源补偿网络的磁场耦合无线电能传输LED驱动电路[J]. 电工技术学报, 2016, 31(增刊1): 1-8. Jing Yanyan, Qu Xiaohui, Han Hongdou, et al. The magnetic coupled wireless power transfer driver based on adjustable gain constant-current com- pensation network[J]. Transactions of China Electro- technical Society, 2016, 31(S1): 1-8. [11] 李均锋, 廖承林, 王丽芳, 等. 基于LCCL的电动汽车无线充电系统最大效率与传输功率解耦设计研究[J]. 电工技术学报, 2015, 30(增刊1): 199-203. Li Junfeng, Liao Chinglin, Wang Lifang, et al. Decoupling method of maximum efficiency and transferring power for electric vehicle wireless charging system via LCCL circuit[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 199-203. [12] 董纪清, 杨上苹, 黄天祥, 等. 用于磁耦合谐振式无线电能传输系统的新型恒流补偿网络[J]. 中国电机工程学, 2015, 35(17): 4468-4476. Dong Jiqing, Yang Shangping, Huang Tianxiang, et al. A novel constant current compensation network for magnetically-coupled resonant wireless power transfer system[J]. Proceedings of the CSEE, 2015, 35(17): 4468-4476. [13] 麦瑞坤, 陈阳, 刘野然. 基于变补偿参数的IPT恒流恒压电池充电研究[J]. 中国电机工程学报, 2016, 36(21): 5816-5821, 6024. Mai Ruikun, Chen Yang, Liu Yeran. Compen- capacitor alterration based IPT battery charging application with constant current and constant voltage control[J]. Proceedings of the CSEE, 2016, 36(21): 5816-5821, 6024. [14] 孙跃, 张欢, 陶维, 等. 基于变结构模式的宽负载恒压感应耦合电能传输系统[J]. 电力系统自动化, 2016, 40(5): 109-114, 126. Sun Yue, Zhang Huan, Tao Wei, et al. Constant- voltage inductively coupled power transfer system with wild load range based on variable structure mode[J]. Automation of Electric Power Systems, 2016, 40(5): 109-114, 126. [15] Yang Minsheng, Li Xiaofeng, Ao Zhanghong. Transferred power control for ICPT pick-ups utilizing dynamically switched inductor[J]. Energy Procedia, 2012, 16(5): 1440-1447. [16] 陈庆彬, 张伟豪, 叶逢春, 等. 结合变压器T网络模型的具有可变恒压增益特性的补偿网络参数确定新方法[J]. 中国电机工程学报, 2017, 37(15): 4483-4494. Chen Qingbin, Zhang Weihao, Ye Fengchun, et al. A new compensation network parameters design method with variable constant voltage gain characteristics based on transformer T model[J]. Proceedings of the CSEE, 2017, 37(15): 4483-4494. [17] 夏晨阳, 陈国平, 任思源, 等. 采用新型负载恒流供电复合谐振网络的无线电能传输系统[J]. 电力系统自动化, 2017, 41(2): 46-52. Xia Chenyang, Chen Guoping, Ren Siyuan, et al. Wireless power transfer system using composite resonant network for constant-current power supply of load[J]. Automation of Electric Power Systems, 2017, 41(2): 46-52.