Research on Flux-Weakening Performances for Five-Phase Fault-Tolerant Permanent-Magnet Vernier Motors
Liu Guohai1, 2, Yang Xinyu1, 2, Xu Liang1, 2, Zhao Wenxiang1, 2, Zhou Huawei1, 2
1. School of Electrical and Information Engineering Jiangsu University Zhenjiang 212013 China; 2. Jiangsu Key Laboratory of Drive and Intelligent Control for Electric Vehicle Zhenjiang 212013 China
Abstract:The fault-tolerant permanent magnet vernier (FTPMV) machine combines the advantages of high torque density of the permanent-magnet vernier machine and high reliability of the fault-tolerance permanent-magnet machine. Hence, it has become a hot research topic for experts and scholars. In order to study the operating performances of this kind of machine in low and high speed operation regions, the structure, modulation principle of magnetic fields and inductance characteristics of two five-phase machines are compared and analyzed in this paper. Additionally, the mathematical model of five-phase machines is deduced based on flux-weakening and the drive system is established according to the space vector pulse width modulation (SVPWM) control method. Based on the stage control strategy, in the low speed region, id = 0 control strategy is used. In the high speed region, a kind of flux-weakening control strategy is used and the flux-weakening characteristics of machines are studied importantly, in which the moment of flux-weakening is judged based on the difference between bus-bar voltage and back-EMFs. Moreover, by parameters calculation and simulations, it can be found that the new FTPMV machine possesses better flux-weakening capacity than the conventional FTPMV machine when they works on the condition of rated current. Finally, the theoretical analysis is verified by experimental results.
刘国海,杨欣宇,徐亮,赵文祥,周华伟. 五相永磁容错型游标电机弱磁特性研究[J]. 电工技术学报, 2017, 32(19): 52-61.
Liu Guohai, Yang Xinyu, Xu Liang, Zhao Wenxiang, Zhou Huawei. Research on Flux-Weakening Performances for Five-Phase Fault-Tolerant Permanent-Magnet Vernier Motors. Transactions of China Electrotechnical Society, 2017, 32(19): 52-61.
[1] 罗剑波, 陈永华, 刘强. 大规模间歇性新能源并网控制技术综述[J] . 电力系统保护与控制, 2014, 42(22): 140-146. Luo Jianbo, Chen Yonghua, Liu Qiang. Overview of large-scale intermittent new energy grid-connected control technology[J] . Power System Protection and Control, 2014, 42(22): 140-146. [2] 卢东斌, 欧阳明高, 谷靖, 等. 电动汽车永磁同步电机最优制动能量回馈控制[J] . 中国电机工程学报, 2013, 33(3): 83-91. Lu Dongbin, Ouyang Minggao, Gu Jing, et al. Optimal regenerative braking control for permanent magnet synchronous motors in electric vehicles[J] . Proceedings of the CSEE, 2013, 33(3): 83-91. [3] 秦斌, 姜学想, 朱万力, 等. 基于无风速传感器的永磁直驱风力发电系统的直接转矩最大功率跟踪控制[J] . 电工技术学报, 2014, 29(增刊1): 132-137. Qin Bin, Jiang Xuexiang, Zhu Wanli, et al. Maximum power point tracking of PMSG wind turbine system based on the direct torque control without wind speed sensors[J] . Transactions of China Electrotechnical Society, 2014, 29(S1): 132-137. [4] 李晓宇, 施伟锋, 王胜, 等. 船舶电力推进永磁同步电机滑模变结构控制研究[J] . 通信电源技术, 2015, 32(5): 9-11. Li Xiaoyu, Shi Weifeng, Wang Sheng, et al. Study on sliding mode controller of PMSM for the maritime electric propulsion[J] . Telecom Power Technology, 2015, 32(5): 9-11. [5] 黄磊, 胡敏强, 余海涛, 等. 直驱式波浪发电用全超导初级励磁直线发电机的设计与分析[J] . 电工技术学报, 2015, 30(2): 80-86. Huang Lei, Hu Minqiang, Yu Haitao, et al. Design and analysis of a fully-superconducting primary- excitation linear generator for direct-driven wave energy generation[J] . Transactions of China Electrotechnical Society, 2015, 30(2): 80-86. [6] 杜怿, 程明, 邹国棠. 初级永磁型游标直线电机设计与静态特性分析[J] . 电工技术学报, 2012, 27(11): 22-30. Du Yi, Cheng Ming, Zou Guotang. Design and analysis of a new linear primary permanent magnet vernier machine[J] . Transactions of China Electrotechnical Society, 2012, 27(11): 22-30. [7] 李祥林, 程明, 邹国棠, 等. 聚磁式场调制永磁风力发电机工作原理与静态特性[J] . 电工技术学报, 2014, 29(11): 1-9. Li Xianglin, Cheng Ming, Zou Guotang, et al. Principle and analysis of a new flux-concentrating field-modulated permanent-magnet wind power generator[J] . Transactions of China Electrotechnical Society, 2014, 29(11): 1-9. [8] Li Dawei, Qu Ronghai, Lipo T A. High power factor vernier permanent magnet machines[J] . IEEE Transactions on Industry Applications, 2013, 50(6): 1534-1540. [9] Cheng Ming, Han Peng, Hua Wei. General airgap field modulation theory for electrical machines[J] . IEEE Transactions on Industrial Electronics, 2017, 64(8): 6063-6074. [10] 赵文祥, 唐建勋, 吉敬华, 等. 五相容错式磁通切换电机及其控制[J] . 中国电机工程学报, 2015, 35(5): 1229-1236. Zhao Wenxiang, Tang Jianxun, Ji Jinghua, et al. Topology and control of five-phase fault-tolerant flux-switching permanent-magnet motor[J] . Proceedings of the CSEE, 2015, 35(5): 1229-1236. [11] Liu Guohai, Yang Junqin, Zhao Wenxiang, et al. Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles[J] . IEEE Transactions on Magnetics, 2012, 48(11): 4176-4179. [12] Yang Junqin, Liu Guohai, Zhao Wenxiang, et al. Quantitative comparison for fractional-slot concentrated- winding configurations of permanent-magnet vernier machines[J] . IEEE Transactions on Magnetics, 2013, 49(7): 3826-3829. [13] Xu Liang, Liu Guohai, Zhao Wenxiang, et al. Quantitative comparison of integral and fractional slot permanent magnet vernier motors[J] . IEEE Transactions on Energy Conversion, 2015, 30(4): 1483-1495. [14] Evans D J, Zhu Z Q, Zhan Hanlin, et al. Flux- weakening control performance of partitioned stator- switched flux PM machines[J] . IEEE Transactions on Industry Applications, 2016, 52(3): 2350-2359. [15] Zhu Z Q, Al-Ani M M J, Liu Xiahe, et al. A mechanical flux weakening method for switched flux permanent magnet machines[J] . IEEE Transactions on Energy Conversion, 2015, 30(2): 806-815. [16] El-Refaie A M, Jahns T M. Optimal flux weakening in surface PM machines using fractional slot concentrated windings[J] . IEEE Transactions on Industry Applications, 2005, 41(3): 790-800. [17] 赵纪龙, 林明耀, 徐妲, 等. 混合励磁轴向磁场磁通切换电机弱磁控制[J] . 中国电机工程学报, 2015, 35(19): 5059-5068. Zhao Jilong, Lin Mingyao, Xu Da, et al. Flux- weakening control of hybrid excited axial field flux- switching machines[J] . Proceedings of the CSEE, 2015, 35(19): 5059-5068. [18] Liu Hesong, Zhu Z Q, Mohamed E, et al. Flux-weakening control of nonsalient pole PMSM having large winding inductance, accounting for resistive voltage drop and inverter nonlinearities[J] . IEEE Transactions on Power Electronics, 2012, 27(2): 942-952. [19] 周华伟, 陈龙, 刘国海, 等. 一种改善PMSM动态性能的弱磁策略[J] . 电机与控制学报, 2014, 18(9): 23-29. Zhou Huawei, Chen Long, Liu Guohai, et al. Flux-weakening strategy for improving PMSM dynamic performance[J] . Electric Machines and Control, 2014, 18(9): 23-29. [20] Chen Qian, Liu Guohai, Zhao Wenxiang, et al. Design and comparison of two fault-tolerant interior-permanent-magnet motors[J] . IEEE Transactions on Industrial Electronics, 2014, 61(12): 6615-6623. [21] 陈前, 刘国海, 赵文祥. 一种辐向永磁容错电动机的电磁特性精确分析[J] . 电工技术学报, 2014, 29(增刊1): 95-102. Chen Qian, Liu Guohai, Zhao Wenxiang. Accurate analysis of electromagnetic performances for a spoke-type permanent magnet fault-tolerant machine[J] . Transactions of China Electrotechnical Society, 2014, 29(S1): 95-102. [22] Li Xianglin, Chau K T, Cheng Ming, et al. Performance analysis of a flux-concentrating field-modulated permanent-magnet machine for direct-drive applications[J] . IEEE Transactions on Magnetics, 2015, 51(5): 1-11. [23] Toba A, Lipo T A. Generic torque-maximizing design methodology of surface permanent-magnet vernier machine[J] . IEEE Transactions on Industry Applications, 2000, 36(6): 1539-1546. [24] 何亚屏, 文宇良, 许峻峰, 等. 基于多模式SVPWM 算法的永磁同步牵引电机弱磁控制策略[J] . 电工技术学报, 2012, 27(3): 92-99. He Yaping, Wen Yuliang, Xu Junfeng, et al. High-power permanent magnet flux-weakening strategy based on multi-mode SVPWM[J] . Transactions of China Electrotechical Society, 2012, 27(3): 92-99. [25] 周长攀, 苏健勇, 杨贵杰. 双三相永磁同步电机全调制比范围空间矢量脉宽调制[J] . 电工技术学报, 2015, 30(10): 90-100. Zhou Changpan, Su Jianyong, Yang Guijie. The SVPWM strategy in full modulation region for dual three-phase PMSM[J] . Transactions of China Electrotechnical Society, 2015, 30(10): 90-100. [26] An Shaoliang, Sun Xiangdong, Zhang Qi, et al. Study on the novel generalized discontinuous SVPWM strategies for three-phase voltage source inverters[J] . IEEE Transactions on Industrial Informatics, 2013, 9(2): 781-789. [27] 孙国栋, 苏健勇, 杨贵杰. 五相VSI最近四矢量最小谐波电压调制方法[J] . 中国电机工程学报, 2016, doi:10.13334/j.0258-8013.pcsee.161606. Sun Guodong, Su Jianyong, Yang Guijie. Minimum harmonic voltage modulation method of near four vector for five-phase voltage source inverter[J] . Proceedings of the CSEE, 2016, doi:10. 13334/j. 0258-8013. pcsee. 161606. [28] Liu Guohai, Qu Li, Zhao Wenxiang, et al. Comparison of two SVPWM control strategies of five-phase fault-tolerant permanent-magnet motor[J] . IEEE Transactions on Power Electronics, 2016, 31(9): 6621-6630. [29] 吴德会, 夏晓昊, 张忠远, 等. 基于三相桥臂坐标的SVPWM过调制方法[J] . 电工技术学报, 2015, 30(1): 150-158. Wu Dehui, Xia Xiaohao, Zhang Zhongyuan, et al. A SVPWM overmodulation methed based on three-phase bridge arm coordinates[J] . Transactions of China Electrotechnical Society, 2015, 30(1): 150-158. [30] 李世军, 罗隆福, 佘双翔, 等. 基于空间矢量和特定消谐脉宽调制的三电平逆变器调制方法[J] . 电工技术学报, 2015, 30(12): 34-40. Li Shijun, Luo Longfu, She Shuangxiang, et al. A method of SVPWM and SHEPWM applied to three-level NPC inverter[J] . Transactions of China Electrotechnical Society, 2015, 30(12): 34-40.