Abstract:Unit commitment belongs to mixed variables programming which is difficult to find the optimal solution in mathematics. This paper presents a general pattern search algorithm with mixed variable (GPSMV) to solve unit commitment problems at the first time. The proposed algorithm can solve problems for which the objective function is nonlinear, nonconvex, nondifferentiable, stochastic, or even discontinuous. GPSMV guarantees global convergence and it only needs values of objective function and barrier functions consisted by constraint condition while discards the information of their derivative. During the process of optimization, the discrete variables can be deal directly while not dividing original problem to be discrete and continuous part. Simulations are executed on six systems of 10~100 units and 26 units in 24 time intervals, and the results verify the effectiveness of the proposed algorithm.
黎静华, 韦化. 基于模式搜索算法的电力系统机组组合问题[J]. 电工技术学报, 2009, 24(6): 121-128.
Li Jinghua, Wei Hua. A General Pattern Search Algorithm for Electric Power System Unit Commitment Problems. Transactions of China Electrotechnical Society, 2009, 24(6): 121-128.
[1] Happ H H, Johnson R C, Wright W J. Large scale hydro-thermal unit commitment-method and results[J]. IEEE Trans. on Power Applicat. Syst., 1971, 90(3): 1373-1384. [2] Baldwin C J, Dale K M, Dittrich R F. A study of economic shutdown of generating units in daily dispatch[J]. AIEE Trans. on PAS, 1959, 78(4): 1272- 1284. [3] Sheble G B, Fahd G B. Unit commitment literature synopsis[J]. IEEE Trans. on Power Systems, 1977, 9(1): 7-83. [4] Ohuch A, Kaji I. A branch-and-bound algorithm for startup and shutdown problem of thermal generating units[J]. Inst. Elect. Eng. Japan, 1975, 95-B(10): 461-468. [5] Lauer G S, Bertsekas D P, Sandell Jr N R, et al. Solution of large-scale optimal unit commitment problems[J]. IEEE Trans. on Power Apparat. Syst., 1982, PAS-101: 79-86. [6] Li C, Johnson R B, Svoboda A J, et al. A robust unit commitment algorithm for hydro-thermal optimization[J]. IEEE Trans. on Power Systems, 1998(3): 1051-1056. [7] Redondo N J, Conejo A J. Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem[J]. IEEE Trans. on Power Systems, 1999, 14(1): 89-95. [8] 王成文, 韩勇, 谭忠富, 等. 一种求解机组组合优化问题的降维半解析动态规划方法[J]. 电工技术学报, 2006, 21(5): 110-116. [9] 胡家声, 郭创新, 曹一家. 一种适合于电力系统机组组合问题的混合粒子群优化算法[J]. 中国电机工程学报, 2004, 24(4): 24-28. [10] 王喆, 余贻新, 张弘鹏, 等. 社会演化算法在机组组合中的应用[J]. 中国电机工程学报, 2004, 24(4): 12-17. [11] 陈皓勇, 张靠社, 王锡凡. 电力系统机组机组组合问题的系统进化算法[J]. 中国电机工程学报, 1999, 19(12): 9-13, 40. [12] Mantawy A H, Abdel-Magid Y L, Selim S Z. A simulated annealing algorithm for unit commitment[J]. IEEE Trans. Power Systems, 1998, 13(1): 197-204. [13] Kazarlis S A, Bakirtizis A G, Petridis V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Trans. on Power Systems, 2002, 11(1): 58-63. [14] Torczon V J. On the convergence of pattern search algorithm[J]. SIAM Journal on Optimization, 1997, 7(1): 1-25. [15] Lewis R M, Torczon V J. Pattern search methods for linearly constrained minimi- zation[J]. SIAM Journal on Optimization, 2000, 10(3): 917-941. [16] Audet, Charles, Dennis Jr J E. Analysis of generalized pattern search[J]. SIAM Journal on Optimization, 2003, 13(3): 889-903. [17] Lewis R M, Torczon V J. A globally convergent augmented Lagrangian patter search algorithm for optimization with general constraints and simple bounds[J]. SIAM Journal on Optimization, 2002, 12(4): 1075-1089. [18] Charles Audet, Dennis Jr J E. A pattern search filter method for nonlinear programming without derivatives[J]. SIAM Journal on Optimization, 2004, 14(4): 980-1010. [19] Abranmson M A. Pattern search algorithm for mixed variable general constrained optimization prob- lems[D]. Houston: Rice University, 2002. [20] Audet C, Dennis Jr J E. Pattern search algorithms for mixed variable programming[J]. SIAM Journal on Optimization, 2000, 11(3): 573-594. [21] Lucidi S, Piccialli V. A derivative-based algorithm for a particular class of mixed variable optimization problems[J]. Optimization Method and Software, 2004, 19(3-4): 371-387. [22] Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Trans. on Power Systems, 1996, 11(1): 83-92. [23] Juste K A, Kita H, Tanaka E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Trans. on Power Systems, 1999, 18(2): 1452-1459. [24] Senjyu T, Shimabukuro K, Uezato K. A fast technique for unit commitment problem by extended priority list[J]. IEEE Trans. on Power Systems, 2003, 18(2): 882-888. [25] Srinivasan D, Chzelas J. A priority list-based evolutionary algorithm to solve large scale unit commitment problem[C]. International Conference on Power System Technology-Powercon Singapore, 2004. [26] Wang C, Shahidehpour S M. Effect of ramp-rate limits on unit commitment and economic dispatch[J]. IEEE Trans. on Power Systems, 1994, 9 (3): 1539- 1545.