Abstract:A novel adaptive ramp compensation scheme is proposed to improve stability for Buck converters with ripple-based constant on-time control. Compared with traditional compensation approaches, the new method eliminates sub-harmonic oscillation more effectively by using digital control approach to generate "every other cycle" ramp compensation signal. Furthermore, the slope of ramp compensation is adaptively adjusted according to the off-time difference between two consecutive cycles. These features minimize the required ramp amplitude at steady state and effectively avoid over-compensation, and thus, reduce the impact on transient response performance of constant on-time control. Theoretical analysis and experimental results are provided to verify the proposed scheme.
[1] Goder D, Pelletier W R. V 2 architecture provides ultra-fast transient response in switch mode power supplies[C]//Proceedings of HFPC Power Conversion, 1996: 414-420. [2] Ridley R B. A new continuous-time model for current- mode control with constant frequency, constant on- time, and constant off-time, in CCM and DCM[C]// IEEE Power Electronics Specialists Conference, 1990: 382-389. [3] 蒋皓, 金科. 数字控制电压调整器模块的建模分析[J]. 电工技术学报, 2014, 29(12): 42-49. Jiang Hao, Jin Ke. Modeling of digitally controlled voltage regulator module[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 42-49. [4] Redl R, Sokal N O. Current-mode control, five different types, used with the three basic classes of power converters: small-signal AC and large-signal DC characterization, stability requirements, and implementation of practical circuits[C]//IEEE Power Electronics Specialists Conference, 1985: 771-785. [5] Tan F D, Middlebrook R D. A unified model for current-programmed converters[J]. IEEE Transactions on Power Electronics, 1995, 10(4): 397-408. [6] 张希, 沙金, 徐杨军, 等. 恒定导通时间电容电流控制Buck变换器研究[J]. 电工技术学报, 2015, 30(23): 18-23. Zhang Xi, Sha Jin, Xu Yangjun, et al. Research on the constant on-time capacitor current control of Buck converters[J]. Transactions of China Electro- technical Society, 2015, 30(23): 18-23. [7] Sun J. Characterization and performance comparison of ripple-based control for voltage regulator modules[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 346-353. [8] Wang J, Xu J, Bao B. Analysis of pulse bursting phenomenon in constant-on-time controlled Buck converter[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(12): 5406-5410. [9] Sun J. Small-signal modeling of variable-frequency pulsewidth modulators[J]. IEEE Transactions on Aerospace & Electronic Systems, 2002, 38(3): 1104- 1108. [10] Li J, Lee F C. New modeling approach and equivalent circuit representation for current-mode control[J]. IEEE Transactions on Power Electronics, 2010, 25(5): 1218-1230. [11] Qian T. Subharmonic analysis for Buck converters with constant on-time control and ramp compen- sation[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1780-1786. [12] Qian T, Wu W, Zhu W. Effect of combined output capacitors for stability of Buck converters with constant on-time control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5585-5592. [13] Tian S, Lee F C, Mattavelli P, et al. Small-signal analysis and optimal design of external ramp for constant on-time V 2 control with multilayer ceramic caps[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4450-4460. [14] SPRUH18E: TMS320x2806x Piccolo technical refer- ence manual[EB/OL]. Texas, America: Texas Instru- ments Incorporated, 2011[2015-10-11]. http://www. ti.com.cn/cn/lit/ug/spruh18e/spruh18e.pdf. [15] SPRS698E: TMS320F2806x Piccolo™ microcon- trollers[EB/OL]. Texas, America: Texas Instruments Incorporated, 2010[2015-10-11]. http://www.ti.com. cn/cn/lit/ds/sprs698e/sprs698e.pdf. [16] 王金平, 许建平, 兰燕妮, 等. 基于输入电压前馈补偿的开关变换器恒定导通时间控制技术[J]. 电工技术学报, 2012, 27(2): 18-22. Wang Jinping, Xu Jianping, Lan Yanni, et al. Con- stant on-time control of switching DC-DC converters based on input voltage feed-forward compensation[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 18-22. [17] 杜韦静, 张军明, 钱照明. 基于回转器理论的电流模式控制型DC-DC变流器统一大信号模型[J]. 电工技术学报, 2015, 30(1): 127-134. Du Weijing, Zhang Junming, Qian Zhaoming. Unified large signal model for current mode con- trolled DC-DC converters based on gyrator theory[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 127-134. [18] 包伯成, 冯霏, 潘赛虎. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象及其抑制技术[J]. 电工技术学报, 2014, 29(4): 38-44. Bao Bocheng, Feng Fei, Pan Saihu. Low-frequency oscillation phenomenon and its suppression technique in pulse skipping modulation CCM Buck converter[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 38-44. [19] Chen W C, Wang C S, Lin C C, et al. Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for Buck converter with multi-layer ceramic capacitors[J]. IEEE Transa- ctions on Power Electronics, 2013, 28(5): 2366-2376. [20] Fang C C, Redl R. Subharmonic stability limits for the Buck converter with ripple-based constant on- time control and feedback filter[J]. IEEE Transa- ctions on Power Electronics, 2014, 29(4): 2135-2142. [21] Lin Y C, Chen C J, Chen D, et al. A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters[J]. IEEE Transactions on Power Electronics, 2012, 27(10): 4301-4310. [22] Cheng K Y, Yu F, Lee F C, et al. Digital enhanced V 2 -type constant on-time control using inductor current ramp estimation for a Buck converter with low-ESR capacitors[J]. IEEE Transactions on Power Electronics, 2010, 28(3): 508-513.