Abstract:In the conventional Buck converter with synchronous rectifier, hard-switching operation of the main switch and reverse-recovery problem of the synchronous switch result in deteriorated switching loss and electro magnetic interference (EMI) problem. In order to avoid these two undesired shortcomings, a novel synchronous Buck converter with a coupled inductor was proposed to achieve zero-voltage-switching for both switches over the whole load range. The converter is simple since only a coupled winding and an auxiliary diode are needed. In the paper, the operation principle and steady characteristics of the converter were thoroughly analyzed. Moreover, variable frequency modulation was employed to reduce conduction losses and thus improve converter efficiency. Finally, design considerations were given and experimental results were provided to verify the advantage of converter and the correctness of theoretical analysis.
[1] 秦岭, 孔笑笑, 茅靖峰, 等. 大型停车场电动汽车直流充电桩用低电应力ZCS-PWM Superbuck变换器[J]. 电工技术学报, 2015, 30(23): 32-41. Qin Ling, Kong Xiaoxiao, Mao Jingfeng, et al. ZCS- PWM Superbuck converter with reduced electric stress for electric vehicle DC charging spot in large parking lot[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 32-41. [2] 王勉, 王志和. Boost 型DC-DC变换器无源控制研究[J]. 电工技术学报, 2015, 30(增1): 80-85. Wang Mian, Wang Zhihe. Passivity based control of Boost type DC-DC converter[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 80-85. [3] 姚雨迎, 张东来, 徐殿国. 级联式DC/DC变换器输出阻抗的优化设计与稳定性[J]. 电工技术学报, 2009, 24(3): 147-152. Yao Yuying, Zhang Donglai, Xu Dianguo. Output impedance optimization and stability for cascade DC/ DC converter[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 147-152. [4] 陈桂鹏, 邓焰, 董洁, 等. 基于移相全桥的串联升压式部分功率DC-DC变换器[J]. 电工技术学报, 2015, 30(19): 128-135. Chen Guipeng, Deng Yan, Dong Jie, et al. Series- connected step-up partial power processing DC-DC topology based on phase-shifted full-bridge converter [J]. Transactions of China Electrotechnical Society, 2015, 30(19): 128-135. [5] Chae S, Song Y, Park S, et al. Digital current sharing method for parallel interleaved DC-DC converters using input ripple voltage[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 536-544. [6] Zhou Xunwei, Donati M, Amoroso L, et al. Improved light-load efficiency for synchronous rectifier voltage regulator module[J]. IEEE Transactions on Power Electronics, 2000, 15(5): 826-834. [7] 杨玉岗, 邹雨霏, 代少杰, 等. DCM模式下交错并联磁集成双向DC/DC变换器的稳态性能分析[J]. 电工技术学报, 2015, 30(11): 60-70. Yang Yugang, Zou Yufei, Dai Shaojie, et al. Steady state performance analysis of the interleaving and magnetically integrated bidirectional DC/DC converter under DCM mode[J]. Transactions of China Elec- trotechnical Society, 2015, 30(11): 60-70. [8] 马红波, 刘文军, 邱忠才, 等. 基于LLC谐振变换器的准单级式悬浮控制电源[J]. 电工技术学报, 2014, 29(增1): 210-217. Mao Hongbo, Liu Wenjun, Qiu Zhongcai, et al. Quasi- single-stage power supply based on LLC topology for magnetic levitation control system applications[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 210-217. [9] Eberle W, Zhang Zhiliang, Liu Yanfei, et al. A practical switching loss model for Buck voltage regulators[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 700-713. [10] Lopez T, Elferich R. Quantification of power MOSFET losses in a synchronous Buck converter[C]//IEEE Applied Power Electronics Conference, 2007: 1594- 1600. [11] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Zheng Qionglin, Ke Chong, et al. Perfor- mance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 41-50. [12] Jayashree E, Uma G. Design and implementation of zero-voltage-switching quasi-resonant positive-output Luo converter using analog resonant controller UC3861 [J]. IET Power Electronics, 2011, 4(1): 81-88. [13] Chuang Ying-Chun, Ke Yu-Lung. A novel high- efficiency battery charger with a Buck zero-voltage- switching resonant converter[J]. IEEE Transactions on Energy Conversion, 2007, 22(4): 848-854. [14] Liu K H, Lee F C Y. Zero-voltage switching technique in DC/DC converters[J]. IEEE Transactions on Power Electronics, 1990, 5(3): 293-304. [15] Tabisz W A, Lee F C. Zero-voltage-switching multi- resonant technique—a novel approach to improve performance of high frequency quasi-resonant con- verters[C]//IEEE Power Electronics Specialists Con- ference, 1988: 9-17. [16] Jin K, Ruan Xinbo. Zero-voltage-switching multire- sonant three-level converters[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1705-1715. [17] Lakshminarasamma N, Masihuzzaman M, Ramanara- yanan, V. Steady-state stability of current-mode active- clamp ZVS DC-DC converters[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1295-1304. [18] Nan Chenhao, Ayyanar R, Xi Youhao. High frequency active-clamp Buck converter for low power automotive applications[C]//IEEE Energy Conversion Congress and Exposition, 2014: 3780-3785. [19] 顾亦磊, 陈世杰, 吕征宇, 等. 单开关DC/DC变换器的一种软开关实现策略[J]. 中国电机工程学报, 2004, 24(11): 130-133. Gu Yilei, Chen Shijie, Lü Zhengyu, et al. Strategy for single switch DC/DC converters to achieve soft switching[J]. Proceedings of the CSEE, 2004, 24(11): 130-133. [20] Garcia O, Zumel P, de Castro A, et al. Current self-balance mechanism in multiphase Buck converter [J]. IEEE Transactions on Power Electronics, 2009, 24(6): 1600-1606. [21] Sheng-Yuan O, Huei-Fa S, Ho-Pu H. A novel variable frequency modulation technique for multiphase synch- ronous rectified VRM[C]//IEEE Conference on Indus- trial Electronics and Applications, 2010: 1174-1181. [22] Adib E, Farzanehfard H. Zero-voltage-transition PWM converters with synchronous rectifier[J]. IEEE Transac- tions on Power Electronics, 2010, 25(1): 105-110. [23] Mao H, Abdel R O, Batarseh I. Zero-voltage-switching DC-DC converters with synchronous rectifiers[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 369-378. [24] ChittiBabu B, Samantaray S R, Saraogi N, et al. Synchronous Buck converter based PV energy system for portable applications[C]//IEEE Student's Technology Symposium, 2011: 335-340.