Trans-Regional and Distributed Optimal Coordination Control of AGC Units Under Large-Scale Wind Power Grid
Zhang Lei1, Luo Yi1, Xiao Yayuan1, Ye Jing2, Wang Gang3
1.School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China 2.School of Electrical Engineering Wuhan University Wuhan 430074 China 3.State Grid Tianjin Power Economics Research Institute Tianjin 300000 China
Abstract:Wind power resources in China are mainly concentrated in the west and north.Large-scale wind power delivery is an effective way to solve the problem of wind power consumption.But with the increase of wind power penetration,the uncertainty caused by the power fluctuation enables that the automatic generation control (AGC) under some regions or provinces appears more serious problems,e.g.insufficient adjustable resources and control.To solve the problem,this paper uses the AGC units distributed in the whole network to achieve the optimal coordinated and distributed control.First,this paper introduces the concept of the coordination factor to establish the optimal coordinated AGC control model.Second,by using the original dual gradient algorithm to transform the model and the linear transformation method,the optimal coordination controller based on a distributed coordination factor is constructed.The simulation examples show that the grid dispatching AGC units can control the frequency deviation in coordination with the increase of the wind power penetration and effectively balance the amount of power imbalance caused by wind uncertainty.
张磊, 罗毅, 肖雅元, 叶婧, 王罡. 大规模风电并网条件下AGC机组跨区分布式最优协调控制[J]. 电工技术学报, 2016, 31(9): 42-49.
Zhang Lei, Luo Yi, Xiao Yayuan, Ye Jing, Wang Gang. Trans-Regional and Distributed Optimal Coordination Control of AGC Units Under Large-Scale Wind Power Grid. Transactions of China Electrotechnical Society, 2016, 31(9): 42-49.
[1] 薛禹胜,雷兴,薛峰,等.关于风电不确定性对电力系统影响的评述[J].中国电机工程学报,2014,34(29):5029-5040. Xue Yusheng,Lei Xing,Xue Feng,et al.A review on impacts of wind power uncertainties on power systems[J].Proceedings of the CSEE,2014,34(29):5029-5040. [2] 吴云亮,孙元章,徐箭,等.基于多变量广义预测理论的互联电力系统负荷-频率协调控制体系[J].电工技术学报,2012,27(9):101-107. Wu Yunliang,Sun Yuanzhang,Xu Jian,et al.Coordinated load-frequency control system in interconnected power system based on multivariable generalized predictive control theory[J].Transactions of China Electrotechnical Society,2012,27(9):101-107. [3] 蔡国伟,孔令国,潘超,等.风光储联合发电系统的建模及并网控制策略[J].电工技术学报,2013,28(9):196-204. Cai Guowei,Kong Lingguo,Pan Chao,et al.System modeling of wind-PV-ES hybrid power system and its control strategy for grid-connected[J].Transactions of China Electrotechnical Society,2013,28(9):196-204. [4] 彭思敏,窦真兰,凌志斌,等.并联型储能系统孤网运行协调控制策略[J].电工技术学报,2013,28(5):128-134. Peng Simin,Dou Zhenlan,Ling Zhibin,et al.Cooperative control for parallel-connected battery energy storage system of islanded power system[J].Transactions of China Electrotechnical Society,2013,28(5):128-134. [5] 胡泽春,谢旭,张放,等.含储能资源参与的自动发电控制策略研究[J].中国电机工程学报,2014,34(29):5080-5087. Hu Zechun,Xie Xu,Zhang Fang,et al.Research on automatic generation control strategy incorporating energy storage resources[J].Proceedings of the CSEE,2014,34(29):5080-5087. [6] 王松岩,于继来.含大规模风电系统的非AGC与AGC机组高峰协调控制策略[J].中国电机工程学报,2013,33(7):156-163. Wang Songyan,Yu Jilai.Coordinated dispatch regulation strategy between non-AGC units and AGC units with high wind power penetration[J].Proceedings of the CSEE,2013,33(7):156-163. [7] 何成明,王洪涛,韦仲康,等.风电场与 AGC 机组分布式协同实时控制[J].中国电机工程学报,2015,35(2):302-309. He Chengming,Wang Hongtao,Wei Zhongkang,et al.Distributed coordinated real-time control of wind farm and AGC units[J].Proceedings of the CSEE,2015,35(2):302-309. [8] Zhao C,Topcu U,Li N,et al.Design and stability of load-side primary frequency control in power systems[J].IEEE Transactions on Automatic Control,2014,59(5): 1177-1189. [9] Mudumbai R,Dasgupta S,Cho B B.Distributed control for optimal economic dispatch of a network of heterogeneous power generators[J].IEEE Transactions on Power Systems,2012,27(4):1750-1760. [10]Zhao C,Mallada E,Drfler F.Distributed frequency control for stability and economic dispatch in power networks[C]//American Control Conference,Chicago,IL,2015:2359-2364. [11]Zhang X,Li N,Papachristodoulou A.Achieving real-time economic dispatch in power networks via a saddle point design approach[C]//2015 IEEE Power & Energy Society General Meeting, Denver,CO,2015:1-5. [12]滕贤亮,高宗和,朱斌,等.智能电网调度控制系统 AGC 需求分析及关键技术[J].电力系统自动化,2015,39(1):81-87. Teng Xianliang,Gao Zonghe,Zhu Bin,et al.Requirements analysis and key technologies for automatic generation control for smart grid dispatching and control systems[J].Automation of Electric Power Systems,2015,39(1):81-87. [13]焦春亭,管晓宏,吴江,等.考虑大规模风电跨区消纳的电力系统调度[C]//第三十三届中国控制会议,南京,2014:7549-7554. [14]Chan M L,Dunlop R D,Schweppe F.Dynamic equivalents for average system frequency behavior following major distribances[J].IEEE Transactions on Power Apparatus and Systems,1972,PAS-91(4):1637-1642. [15]Kundur P.Power system stability and control[M].New York:McGraw-hill,1994. [16]Li N,Chen L,Zhao C,et al.Connecting automatic generation control and economic dispatch from an optimization view[C]//American Control Conference (ACC),2014:735-740. [17]Bevrani H.Robust power system frequency control[M].New York:Springer,2009. [18]Andreasson M,Dimarogonas D V,Johansson K H,et al.Distributed vs.centralized power systems frequency control[C]//European Control Conference (ECC),Zurich,2013:3524-3529.