Abstract:As the fundamental part of the electromagnetic launching devices, high pulsed power supplies mainly determine the research progress and application potential of electromagnetic launch technology. In general, study of pulsed power supplies can be divided into three stages, i.e. the study of topology units, modularity research and multiple modules cooperative work. Since inductors are relatively more energy dense than capacitors and inductive store is static in nature, inductive pulsed-power supplies become one of the hot topics recently. At present, the domestic and foreign research institutions and scholars have made great progress in researching the basic topology units and its experimental verification of inductive pulsed-power supplies. However, it takes no systematic study of modularity and multiple modules cooperative work, still at the initial research stage. Based on the review of the current research situation about basic topology units and its experimental verification, this paper presented that further studies will focus on the modularization design, miniaturization, and construction of high pulsed power system by multiple modules cooperative work, in order to accelerate its process of the practicality.
马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24): 222-228.
Ma Shangang, Yu Xinjie, Li Zhen. A Review of the Current Research Situation of Inductive Pulsed-Power Supplies for Electromagnetic Launch. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228.
[1] 王静端. 电磁发射技术的发展及其军事应用[J]. 火力与指挥控制, 2001, 26(1): 5-7. Wang Jingduan. The development and application of military electromagnetic emission technology[J]. Fire Control & Command Control, 2001, 26(1): 5-7. [2] Balathandayuthapani S, Edrington C S, Henry S. Study on converter topologies for capacitive pulse forming network and energy storage units in electric ship[C]. IEEE Electric Ship Technologies Sym- posium, 2011: 459-462. [3] Fridman B E, Enikeev R S, Korotkov S V, et al. A 0.5MJ 18kV module of capacitive energy storage[J]. IEEE Transactions on Plasma Science, 2011, 39(2): 769-774. [4] Mcnab I R. Developments in pulsed power tech- nology[J]. IEEE Transactions on Magnetics, 2001, 37(1): 375-378. [5] Shimomura N, Akiyama H, Maeda S. Compact pulsed power generator using an inductive energy storage system with two-staged opening switches[J]. IEEE Transa- ctions on Plasma Science, 1991, 19 (6): 1220-1227. [6] Jiang W H, Nakahiro K, Yatsui K, et al. Repetitive pulsed high voltage generation using inductive energy storage with static-induction thyristor as opening switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14 (4): 941-946. [7] Zucker O, Wyatt J, Lindner K. The meat grinder: theoretical and practical limitations[J]. IEEE Transa- ctions on Magnetics, 1984, 20(2): 391-394. [8] Sitzman A, Surls D, Mallick J. Stretch meat grinder: a movel circuit topology for reducing opening switch voltage stress[C]. 13th IEEE Pulsed Power Confer- ence, Monterey, CA, 2005: 493-496. [9] Ford R D, Hudson R D, Klug R T. Novel hybrid XRAM current multiplier[J]. IEEE Transactions on Magne- tics, 1993, 29 (1): 949-953. [10] Scharnholz S, Brommer V, Buderer G, et al. High-power MOSFETs and fast-switching thyristors utilized as opening switches for inductive storage systems[J]. IEEE Transactions on Magnetics, 2003, 39 (1): 437-441. [11] Dedie P, Brommer V, Scharnholz S. Experimental realization of an eight-stage XRAM generator based on ICCOS semiconductor opening switches, fed by a magnetodynamic sorage system[J]. IEEE Transa- ctions on Magnetics, 2009, 45 (1): 266-271. [12] 于歆杰, 初祥祥. 串充并放型电感储能脉冲电源XRAM的解耦改进[J]. 清华大学学报(自然科学版), 2012, 52(5): 710-714. Yu Xingjie, Chu Xiangxinang. Decoupling improve- ment for XRAM inductive pulse power source with series charging and parallel discharging[J]. Journal of Tsinghua University (Seience and Technology), 2012, 52(5): 710-714. [13] Yu Xinjie, Chu Xiangxiang. STRETCH meat grinder with ICCOS[J]. IEEE Transactions on Plasma Sciences, 2013, 41(5): 1346-1351. [14] 初祥祥. 电感储能型脉冲电源的研究[D]. 北京: 清华大学, 2012. [15] 刘秀成, 王赞基, 李军. 新型电感储能型电磁炮脉冲电源拓扑[J]. 电网技术, 2009, 21(3): 80-85. Liu Xiucheng, Wang Zanji, Li Jun. Circuit topology of a new inductive storage pulsed-power supply to drive railgun[J]. Power System Technology, 2009, 21(13): 80-85 [16] Sitzman A, Surls D, Mallick J. Design, construction, and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Transactions on Magnetics, 2007, 43(1): 270-274. [17] Sitzman A, Surls D, Mallick J. Modification and testing of a battery-inductor repetitive pulsed power supply for a small railgun[C]. IEEE Pulsed Power Conference, Albuquerque, NM: IEEE Press, 2007: 1793-1798. [18] Sitzman A, Surls D, Mallick J, et al. Operational limits of a commercial gate turn-off thyristor for inductive-store systems[J]. IEEE Transactions on Plasma Science, 2011, 39 (1): 316-321. [19] Dedie P, Brornmer V, Scharnholz S. ICCOS counter- current-thyristor high-power opening switch for currents up to 28kA[J]. IEEE Transactions on Mag- netics, 2009, 45(1): 536-539. [20] Dedie P, Brommer V, Scharnholz S. Twenty- stage toroidal XRAM generator switched by countercurrent thyristors[J]. IEEE Transactions on Plasma Science, 2011, 39 (1): 263-267. [21] Kanter M, Cerny R, Shaked N, et al. Repetitive operation of an XRAM circuit[C]. Proceedings of IEEE Pulsed Power Conference, 1993: 92-94. [22] Kanter M, Pokrvailo A, Shaked N, et al. Factors in inductive storage system design[C]. Tenth IEEE Inter- national Pulsed Power Conference, 1995, 1: 186-191. [23] Aso Y, Yamada S. Current multiplier by inductive storage (CMIS) cooled by and design of meg-ampere CMIS[J]. IEEE Transactions on Plasma Science, 2010, 39(1): 247-250. [24] Yu Xinjie, Ma Shangang, Li Zhen. System imple- mentation and testing of STRETCH meat grinder with ICCOS[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1474-1479. [25] 李海涛, 王豫, 董亮, 等. 基于超导储能电感的meat- grinder脉冲电源[J]. 高电压技术, 2014, 40(4): 1127-1133. Li Haitao, Wang Yu, Dong Liang, et al. Super- conducting inductive-capacitive hybrid meat-grinder pulsed supply[J]. High Voltage Engineering, 2014, 40(4): 1127-1133. [26] Dierks E, McNab I R, Mallick J A, et al. Battery- inductor parametric system analysis for electro- magnetic guns[J]. IEEE Transactions on Plasma Science, 2011, 39 (1): 268-274. [27] Ma Shangang, Yu Xinjie, Li Zhen. Determining key parameters for the STRETCH meat grinder circuit[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1485-1490. [28] 刘秀成, 王赞基, 李军. 一种用于电磁发射的电感电容混合型储能脉冲电源[J]. 弹道学报, 2009, 21 (3): 103-106. Liu Xiucheng, Wang Zanji, Li Jun. An inductive- capacitive hybrid pulsed-power supply for electro- magnetic launch[J]. Journal of Ballistics, 2009, 21(3): 103-106. [29] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064.