Application of Polynomial Chaos Expansion in Electrical Systems Considering Uncertainties: an Overview
Li Weilin1, 2, Zhang Xiaobin1, Ni Fei2, Yao Wenli1, Li Huimin3
1. Northwestern Polytechnical University Xi’an 710072 China; 2. RWTH Aachen University Achen 52074 Germany; 3. University of South Carolina Columbia SC 90089 USA
Abstract:Electrical engineering systems are commonly analyzed based on deterministic mathematical models with precisely defined input data. However, since such ideal situations are rarely encountered in practice, the need to address uncertainties is now clearly recognized, probabilistic methods are considered as possible solutions. Polynomial chaos expansion (PCE) is a new and powerful modeling approach for uncertain systems considering its fast computational capabilities compared with traditional methods, such as Monte Carlo. This paper gives a brief introduction on the basic concepts of PCE, as well as its expansion process. Different applications of PCE in the field of electrical engineering, such as PCE based observer, PCE based controller, sensor validation, protection schemes, as well as the distributed state estimation, have also been briefly investigated to show the capability of PCE in simulating uncertainties.
李伟林, 张晓斌, 倪菲, 姚文利, 李惠敏. 多项式混沌理论在电气系统不确定性研究中的应用概述[J]. 电工技术学报, 2015, 30(22): 247-255.
Li Weilin, Zhang Xiaobin, Ni Fei, Yao Wenli, Li Huimin. Application of Polynomial Chaos Expansion in Electrical Systems Considering Uncertainties: an Overview. Transactions of China Electrotechnical Society, 2015, 30(22): 247-255.
[1] Balaban P, Golembski J J. Statistical analysis for practical circuit design[J]. IEEE Transactions on Circuits & Systems, 1975, 22(2): 100-108. [2] Teems E Lovett. A polynomial chaos approach to network simulation under uncertainty[D]. Columbia: University of South Carolina, 2004. [3] Smith A H C. Robust and optimal control using polynomial chaos theory[D]. Columbia: University of South Carolina, 2007. [4] Wiener. The homogeneous chaos[J]. American Journal of Mathematics , 1938, 60: 897-936. [5] Xiu D, Karniadakis G E. The Wiener–Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal of Scientific Computing , 2002, 24(2): 619-644. [6] Smith A H C, Monti A, Ponci F. Indirect measurements via a polynomial chaos observer[J]. IEEE Transactions on Instrumentation and Measurement , 2007, 56(3): 743-752. [7] Burl J F. Linear optimal control[M]. Addison Wesley, 1998. [8] Kewlani G, Iagnemma K. A multi-element generalized polynomial chaos approach to analysis of mobile robot dynamics under uncertainty[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots Systems, 2009: 1177-1182. [9] Li Huimin, Antonello Monti. Diagnosis of sensor failure detection and information rebuilding using polynomial chaos theory[C]. Proceedings of IEEE International conference on Instrumentation and Measurement, 2009: 753-758. [10] Li Weilin, Li Huimin, Ni Fei, et al. Digital automatic voltage regulator for synchronous generator consi- dering sensor failure[J]. European Transactions on Electrical Power, 2011, 22(8): 1037-1052. [11] Li Huimin, Li Weilin, Luo Min, et al. Design of smart MVDC power grid protection[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(9): 3035-3046. [12] Tang Lianxiang, Boon Teck Ooi. Locating and isolating DC faults in multi-terminal DC systems[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1877-884. [13] Naidu M, Schoepf T J, Gopalakrishnan S. Arc fault detection scheme for 42V automotive DC networks using current shunt[J]. IEEE Transactions on Power. Electronics , 2006, 21(3): 633-639. [14] Salomonsson D, Soder L, Sannino A. Protection of low-voltage DC microgrids[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1045-1053. [15] Mesut E Baran, Nikhil R Mahajan. Overcurrent protection on voltage-source-converter-based multiter- minal DC distribution systems[J]. IEEE Transactions on Power Delivery , 2007, 22(1): 406-412. [16] Philip Koopman. Model-based adaptation for self- healing systems[C]. Proceeding of IEEE Shipboard Systems, 2002: 27-32. [17] Rao B S, Durrant Whyte H F. Fully decentralized algorithm for multisensory Kalman filtering[J]. IEE- Proceedings-D, 1991, 138(5): 413-420. [18] D'Antona G, Monti A, Ponci F, et al. A distributed state estimator for electric power systems in avionic and naval applications[C]. Proceedings of IEEE International Conference on Instrumentation and Measurement, 2006: 2312-2316. [19] Li Huimin, Monti A, Ponci F, et al. Voltage sensor validation for decentralized power system monitor using polynomial chaos theory[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(5): 1633-1643. [20] Smith A H C, Monti A, Ponci F. Uncertainty and worst-case analysis in electrical measurements using polynomial chaos theory[J]. IEEE Transactions on Instrumentation and Measurements, 2008, 58(1): 58-67. [21] Monti A, Ponci F, Valtorta M. Extending polynomial chaos to include interval analysis[J]. IEEE Trans- actions on Instrumentation and Measurement, 2009, 59(1): 48-55. [22] D'Antona G, Monti A, Ponci F, et al. Maximum entropy multivariate analysis of uncertain dynamical systems based on the Wiener–Askey polynomial chaos [J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(3): 689-695. [23] Voglewede P, Smith A H C, Monti A. Dynamic performance of a SCARA robot manipulator with uncertainty using polynomial chaos theory[J]. IEEE Transactions on Robotics, 2009, 25(1): 206-210.