Abstract:When using FFT for dielectric loss angle (DLA) measurement, the spectral leakage causes errors because of non-synchronization sampling. To reduce those errors, an interpolated FFT algorithm for dielectric loss angle measurement based on triangular self-convolution window (TSCW) is presented in this paper. As the side lobe of the TSCW decays at a very fast rate, errors of DLA measurement caused by spectral leakage can be eliminated by the TSCW. The voltage and current signals were weighted with the TSCW, respectively. Then, the DLA is estimated by fundamental phases of the voltage and current signals though interpolated FFT algorithm. The simulation results, which include fundamental frequency fluctuation, changing of real value of DLA and harmonic component variance, have verified the effectiveness and practicability of the algorithm.
温和, 滕召胜, 王一, 吴双双, 邬蓉蓉. 基于三角自卷积窗的介损角高精度测量算法[J]. 电工技术学报, 2009, 24(3): 203-208.
Wen He, Teng Zhaosheng, Wang Yi, Wu Shuangshuang, Wu Rongrong. High Accuracy Dielectric Loss Angle Measurement Algorithm Based on Triangular Self-Convolution Window. Transactions of China Electrotechnical Society, 2009, 24(3): 203-208.
[1] 王楠, 陈志业, 律方成. 电容型设备绝缘在线监测与诊断技术综述[J]. 电网技术, 2003, 27(8): 72-76. [2] Gunther R, Harald M. New multi-frequency method for the determination of the dissipation factor of capacitors and of the time constant of resistors[C]. Precision Electromagnetic Measurements Digest, 2004 Conference on, 2004: 93-94 [3] Dankov P I. Two-resonator method for measurement of dielectric anisotropy in multilayer samples [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(4): 1534-1544. [4] 杨晓东, 唐超. 改进的数字化测量方法在介损测量中的应用[J]. 重庆工学院学报(自然科学版), 2007, 21(5): 47-50. [5] 赵秀山, 谈克雄, 朱德恒, 等. 介质损耗角的数字化测量[J]. 清华大学学报(自然科学版), 1996, 36(9): 51-56. Zhao Xiushan, Tan Kexiong, Zhu Deheng, et al. Study on digital measurements for dielectric loss angle[J]. Journal of Tsinghua University (Science and Tech- nology), 1996, 36(9): 51-56. [6] 尚勇, 杨敏中, 王晓蓉, 等. 谐波分析法介质损耗因数测量的误差分析[J]. 电工技术学报, 2002, 17(3): 67-71. [7] 王微乐, 李福祺, 谈克雄. 测量介质损耗角的高阶正弦拟合算法[J]. 清华大学学报(自然科学版), 2001, 41(9): 5-8. [8] 徐志钮, 律方成, 李和明. 加Blackman-Harris窗插值算法仿真介损角测量[J]. 高电压技术, 2007, 33(3): 104-108. [9] Qian H, Zhao R X, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm [J]. IEEE Transactions on, Power Delivery, 2007, 22(2): 1064-1069. [10] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J]. 电工技术学报, 1994, 9(2): 53-56. [11] Agrez D.Dynamics of frequency estimation in the frequency domain[J]. IEEE Transactions on Instru- mentation and Measurement, 2007, 56(6): 2111-2118. [12] 张介秋, 梁昌洪, 陈砚圃. 一类新的窗函数—卷积窗及其应用[J]. 中国科学E辑, 2005, 35(7): 773-784. [13] Liguori C, Paolillo A, Pignotti A. Estimation of signal parameters in the frequency domain in the presence of harmonic interference: a comparative analysis[J]. IEEE Transactions on Instrumentation and Measure- ment, 2006, 55(2): 562-569. [14] 赵文春, 马伟明, 胡安. 电机测试中谐波分析的高精度FFT算法[J]. 中国电机工程学报, 2001, 21(12): 83-87. [15] 黄纯. 基于离散傅里叶变换校正的电参量微机测量新算法及应用研究[J]. 中国电机工程学报, 2005, 25(7): 86-91. [16] 江亚群, 何怡刚. 周期信号相位差的高精度数字测量[J]. 电工技术学报, 2006, 21(11): 116-120, 126. [17] 张伏生, 耿中行. 电力系统谐波分析的高精度FFT算法[J]. 中国电机工程学报, 1999, 19(3): 63-66. (下转第215页)